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Abstract

We measure, in two distinct ways, the extent to which the boundary region of moduli space
contributes to the “simple type” condition of Donaldson theory. Using the natural geometric repre-
sentative ofu(pt) defined in [L. Sadun, Commun. Math. Phys. 178 (1996) 107-113], the boundary
region of moduli space contributg% of the homology required for simple type, regardless of the
topology or geometry of the underlying 4-manifold. The simple type condition thus reduces to the
interior of the k+1)th ASD moduli space, intersected with two representatives of (4 times) the
point class, being homologous to 58 copies ofkthemoduli space. This is peculiar, since the only
known embeddings of thedh moduli space into thekg-1)th involve Taubes gluing, and the images
of such embeddings lie entirely in the boundary region.

When using the natural de Rham representativegqof) considered by Witten [Commun. Math.
Phys. 117 (1988) 353], the boundary region contrib%tesﬁwhat is needed for simple type, again
regardless of the topology or geometry of the underlying 4-manifold. The difference between this and
the geometric representative answer is not contradictory, as the contribution of a fixed region to the
Donaldson invariants is geometric, not topological. © 2000 Elsevier Science B.V. Allrights reserved.
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1. Introduction

This paper is a study in the geometry and topology of anti-self-dual Yang—Mills moduli
spaces. Although moduli spaces were studied extensively for their own sake in the 1970s and
early 1980s, in the late 1980s and early 1990s such studies were primarily a means to an end.
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Moduli spaces were studied to compute Donaldson invariants, and Donaldson invariants
were computed for their applications in classifying smooth 4-manifolds. Seiberg—Witten
theory has, of course, made that last road obsolete. It is believed that the Seiberg—Witten
invariants determine the Donaldson invariants, and the former are far easier to handle.

However, Seiberg—Witten theory has opened up new uses for Donaldson theory. From
Seiberg—Witten theory, we now have a much better understanding of Donaldson invariants.
Instead of using moduli spaces as a tool for computing Donaldson invariants, we can now
use Donaldson invariants as a tool for understanding moduli spaces. This paper is an exercise
along those lines.

A basic problem in four-dimensional gauge theory is to understand the “simple type”
condition. In Donaldson theory, a manifold is said to have simple type if its Donaldson
invariants satisfy a certain recursion relation ([12]; see (1.2) below). In Seiberg—Witten
theory, a manifold has simple type if it has no Seiberg—Witten classes of nonzero index.
The two notions of simple type are believed to be equivalent so that theorems proved about
one form of simple type should yield information about the other.

In this paper we work with the Donaldson theory sense of simple type, examining what
simple type implies about the geometry of anti-self-dual moduli spaces. In two ways —
with intersection theory and with de Rham theory using natural (and theredogeneriy
geometric representatives in both cases — we measure the extent to which the boundary
region of moduli space contributes to the simple type recursion relation. Our results imply
that the anti-self-dual moduli spaces associated to any manifold of simple type have a very
surprising interior geometric structure. Widely satisfied sufficient conditions are known for
a manifold to be of simple type [12], and it is conjectured that indgked-manifolds with
b, > 1 are of simple type. (This conjecture is known to be falsebfor= 1, CP? is a
counterexample; see [7,11].) Hence our results apply to a great many manifolds.

Simple type says that th&{1)st moduli spacé 11, intersected with certain varieties,
has the homology of a certain multiple of tkit moduli space\. Our intersection theory
approach is based on the construction in [13] of a geometric representativef af point
(see below). Using this representative we show that the portion of (a small perturbation
of) Mj+1 near the boundary contributq)% of the homology required for simple type,
regardless of the topology or geometry of the underlying 4-manifold. (For a quick, heuristic
derivation of thiss%, see [14].) Simple type thus reduces to a statement reldtiago
nontrivial structure in theénterior of M;1 (unless our small perturbation &1, 1 is
drastically unfaithful topologically, which seems highly unlikely). This is surprising, since
the only known relations betweewt; and M1 involve Taubes patching, and relatd;
to the boundary oM 1.

Our second approach is to use differential form representatives of the images of the
u-map. One then takes the wedge product of these forms and integratesqver If
we restrict the domain of integration to a neighborhood of the boundarytpf,, we
can reinterpret the simple type condition in terms of the integral of a certain 8-form over
a submanifold that represents the space of “bubble parameters” in the neighborhood of
a background connection in;. We show that, again independent of the topology and
geometry of the base manifold, this integral has preci%ailye value of what one would
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naively expect if the relation between our representatives and simple type were captured
purely by a neighborhood of the boundary. Thus again simple type becomes a statement
about the nontrivial structure of the interior of moduli space.

It is curious but no contradiction that the two approaches yield the different numerical
answersg4 and%. While the Donaldson polynomial is topological, hence independent of the
choice of geometric or de Rham representatives, the contribution of each region of moduli
space is geometric, and need not be the same for two different representatives. Indeed, the de
Rham and geometric representative calculations not only disagree on the contribution of the
boundary region, but also disagree on how close to the boundary the essential contributions
are. In terms of the small parametedescribed below, the geometric representative picks
up contributions from bubbles of size(£?), while the bulk of the support of the de Rham
representative is on bubbles of siz€lQ.

Since homological statements are by their nature nonlocal, one might arrange for the
boundary-neighborhood contribution to intersection numbers to be anything one likes by
choosing appropriate representativesyobf a point. Indeed, Donaldson invariants are
usually defined using generic representatives ofiluasses (cf. [4, Section 9.2]), which
force the intersections to stay away from the boundary of moduli space. By contrast, our
representatives are nongeneric but geometrically natural, depending only on the choice of
a point in the base manifold — not on any other details d{, choice of representatives
of other classes iH,(N), or other data. The intersections are all compact, so the total
intersection number is the same in both approaches, but in our approach the locations of
the intersections as well as their number gives geometric information about the structure of
moduli spaces. Similar considerations apply to the de Rham theory calculations; we will
comment on these more specifically below.

To state our results more precisely, we must review the definition of the Donaldson
invariants, and of simple type. L&t be an oriented 4-manifold, |€f = SU(2) or SQ3),
and letB; be the space of irreducible connections (up to gauge equivalencg), dhe
principalG-bundle of instanton numbé&roverN. Let My C By be the space of irreducible
connections orP; with anti-self-dual curvature, modulo gauge transformations. We will
frequently omit the indek.

Donaldson [1,2] defined a map : H;(N,Q) — H*(B*,Q),i = 0, 1, 2, 3, whose
image freely generates the rational cohomolog§ofDonaldson invariants are then defined
by pairing the fundamental class 8f; with products ofu of the homology classes of,
wherek is chosen so that the dimensions match. Formally, for eleménfs [..,[X,] €
H.(N), we write

D([Za] - [Zn]) = ([ Z1D) — - — n((ZDIM]. 1.1

Now letx be the point class iflp(N), and letw be any formal product of classesif (N).
The simple type condition is that, for all,

D(x%w) = 4D(w). 1.2)

Of course, the “fundamental class 0" is usually not well defined, adA; is typi-
cally not compact. The usual way to make sense of (1.1) and (1.2) is with geometric rep-
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resentatives. One finds finite-codimension varieligsin B; that are Poincaré dual to
w([X]); we say simply thaVy represents.([X]). One then counts points, with sign, in

Vs, NN Vg, N M. To make a topological invariant one must show that the number
of intersection points is independent of auxiliary data, such as the metric and the choice of
representatives. This requires careful analysis of the bubbling phenomena thatmake
noncompact.

To compute the left-hand side of (1.2) we need a variety that repregesftthe point
classx. In generalu(x) is not an integral class if/*(B*), so strictly speaking it has no
geometric representative. Howeverdu(x) is an integral class, hence is Poincaré dual to
acycleV, in Bf. Let us suppose that to eaphe N we can, by some natural procedure,
associate a cycléfl’7 homologous td/,. Then the simple type condition can be rewritten as

#H M1 NV, NV, N V) = 64 M N V), 1.3)

wherep andg are any two points ilN, w is an arbitrary formal product of homology cycles

of N, andV,, is a geometric representative ofw). Of course, tacomputethe intersection

number by point-counting one may have to pert\df;bv’, andV,, to achieve transversality,

but the intersection number is well defined as long as the intersection is compact.
More formally, one can write (1.3) as

[Mi+1 0 V[/) N Vq/] = 64[My]. (1.4)

Strictly speaking, the left-hand side is an elemeiiof3x+ 1), while the right-hand side s in
H,.(By). However 3, andBy..1 are homotopy equivalent spaces, and their homology classes
can be identified. Essentially, then, (1.4) says thht, 1 N V,’, N Vq/ consists homologically

of 64 copies oM.

Inview of (1.3), a natural geometric question is whether (and if so, how) one can associate
to each point inM; N V,, anatural and specifiset of 64 points inV;1 N Vl/, N V(; NV,.
Usinggenericrepresentatives of the point class (as is usually done when the goal is to define
and prove relations among Donaldson invariants) there is no hope, as there is no known
way to associate general points/fofy.1 with points of M. One can, however, hope that a
geometrically natural choice of representatives pushes the points @i N Vl/, N Vl; NV,
towards theM; x N stratum of the Uhlenbeck boundary #f; 1, where we can simply
project onto theM,, factor.

Towards this end, fop € N let

vy = {[A] € B; 1| F, isreducible ap}. (1.5)

HereF, = %(FA — xFy4) is the anti-self-dual part of the curvatuFg, and by “reducible
atp” we mean that the componenks (p) are all collinear as elements of the Lie algebra
of G. In [13] it was shown thab,, despite being noncompact in general, is a geometric
representative of4u ([ p]) — to our knowledge, the only such representative that has been
canonically defined. Givem, the intersection of, with a generic representivié, of ()

is compact, so that (perturbing if necessary) the intersection numbers in (1.3)] Wit
replaced by, v,, are well defined.
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The first question studied in this paper, then, is tBigppose p and g are extremely close
points in N, separated by a distance 2L. How many of the points on the left-hand side of
(1.3),with v, V; replaced by, v, lie near the boundary aM,.1? The answer is quite
simple, but surprising.

Theorem 1.1. Let(N, g) be a compact oriented Riemannidmanifold of arbitrary topo-
logy and geometry and lefk > 3b, + 5. Fix a coordinate patch on Nand let p and q be
the points with coordinate&tL, 0, 0, 0). Fix w € SynT(H,N), K > 0,anda € (0, 2).
LetM?. ; be the portion of théperturbed moduli spaceM,1 consisting of a background
of charge k and a charge-one bubble of size KL*. For generic choices of geometric
representatived/,, of u(w), and for all sufficiently small L, the intersection number of
M2 with V,, Ny, Ny is 6D ().

The perturbed moduli spacef, , 1 is constructed, and the genericity conditions specified
in Sections 3and 4. Thistheorem s restated, more precisely, as Theorem 4.1. In this theorem,
and throughout Sections 2—4, we assume khatin the indicated “stable range” to avoid
contributions from lower strata of the compactified moduli space.

To understand why Theorem 1.1 is surprising, observe that it is essentially a statement
about the intersectio.v\;ngrl NV, Nv, Ny, inthe limitasp — ¢. (This is more or less
equivalent to a “neck stretch”, separating the pop#sdq from the rest of the manifold.)
There are three obvious guesses for what might happen in this limit. The first guess is that,
for each point inV (w) N My, 64 points ofV (w) NV (x1) NV (x2) N M+1 get pushed to the
boundary, converging to points iM; x {g} C My x N asp — ¢q. (This was our initial
hope.) A second guess, voiced by most of the experts with whom we discussed the project,
is thatnoneof the points get pushed to the boundary. A third possibility is that the behavior
depends on the details of the manifdldthe metricg, and the homology polynomial.

Theorem 1.1 shows that all three guesses are wrong: for the representgtitbs
number of points pushed to the boundary is independent of the manifold, the metric, and
w, but the number is always 6, not 0 or 64. Moreover, the proof of Theorem 1.1 shows that
the intersection points are pushed to the boundary in a highly regular way. For each point
Ag € V(w) N My, all the six points converge 101g, g) € My x N.

(While there are other potential ways to push point¥éb) NV (p) N V(g) N M1
toward the boundary, such as artificially placing cycles defirinig other than general
position, or by lettingo and/orq approach these cycles, these methods differ from ours in
that they involve choices that are specific to the manifdldg) and the cycles defining.)

It should be noted that our intersection-theoretic results do not distinguish beiween
1 andby > 1. Our calculation is essentially local, involving only the curvature of the
background connectioAg at g, so it is not surprising that the “6” in our formula for the
boundary-neighborhood intersection number is independeit ofVhat is surprising, at
least to the authors, is that this number is not 64. As manifoldsiyitk 1 appear to have
simple type, the authors had expected manifolds wjth- 1 to have a boundary contribu-
tion of 64D (w) and zero interior contribution, while manifolds with. = 1 would have a
boundary contribution of 62 (w) plus a mysterious interior contribution that our methods
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could not probe. But Theorem 1.1 yields a boundary contribution/nf.§ regardless of
simple typeSimple type thus reduces to a statement thatp fmndq sufficiently close, the
interior of M1 N v, Ny, is homologous to 58 copies @#,. This is striking, since in
general very little is known about the interior 8f; 1. As noted earlier, the only known
embeddings ofM,, into M1 involve Taubes patching, and have an image near the bound-
ary of My1. Theorem 1.1 implies that for any manifold of simple type, the intersection
number has a peculiar interior contribution of/3@), while CP2, which does not have
simple type, has an interior contribution of something other than(a8.

On the level of differential forms, the de Rham-theoretic version oftimneap is repre-
sented by a map

na: R'(N) - 2By, i=0,....4% (1.6)

the argument ofug is a form representing the Poincaré dual of the argument.dh
particular,u(x) is represented by a 4-forpg(w) € H4(B,f+l) for anyw € 24(N) with
Sy =1.

One can write down an explicit formula for such a representativer) by appealing
to Chern—Weil theory on the canonicaO(3)-bundle? — B,’;H x M (see Section 5).
Furthermore giverp € M, if we replacew by §,, a delta-form supported at a poipt
then the resulting form o , is still de Rham cohomologous to a form obtained using
smoothw (although there is an important difference that we will discuss later). Let us write
ud(p) ‘= nd(8,). Note that for smooth € 24(N) we have

Ha(@)]a = /N 1d(p) 4o (p). (L.7)

Itis generally believed that the integrals of wedge products of the fargt$ over moduli
space compute the Donaldson invariants (the “de Rham-theoretic conjecture”). This con-
jecture has been largely unapproachable because of formidable analytic problems posed by
these differential forms: they are nonlocalpninvolving covariant Green operators, and
have noncompact supporti

However, even absent a proof of the de Rham-theoretic conjecture, these differential
forms have been of interest to physicists, appearing, for example, as correlation functions of
massless Fermion fields in Wittens = 2 supersymmetric topologic quantum field theory
(TQFT) approach to Donaldson theory [17]. The poor localizationdxf) is reflective of
the supersymmetry that Seiberg and Witten [15,18] used to relate Donaldson invariants to
solutions to the Seiberg—Witten equations. Short-distance properties of the Seiberg—Witten
TQFT are said to be related to long-distance properties of the Donaldson TQFT, e.g.,
the nonlocality of differential forms. The extreme fruitfulness of this approach argues for
more rigorous analysis of these forms. While our original motivation for considering these
differential forms was primarily to study their relation to simple type, we hope that the
material in Sections 5-10 will provide the foundation for a rigorous understanding of these
forms. A proof of the de Rham-theoretic conjecture, for example, would necessarily entail
showing that the relevant differential forms are integrable over the whole moduli space.
This boils down to integrability over the ends. Our analysis in Sections 5-10 is a step in
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this direction: essentially we show integrability near one stratum of the boundary (modulo
certain technical assumptions). With more work along the same lines, we suspect that one
could both eliminate the technical assumptions and show integrability over neighborhoods
of all the boundary strata. As is already evident from the work in our paper, such a proof
would require an enormous amount of additional technical work tangential to our primary
purpose. However, someone wishing to prove the de Rham-theoretic conjecture could take
this paper as a starting point.

A necessary condition for de Rham-theoretic conjecture to be true is that for manifolds of
simple type, the integrals of productsef-images obey exactly the same calculus that one
would expect from simple type. To examine this expected calculus in greater defabhdet
an eight-dimensional cycle i} ;. Since the cohomology class@f(p) is independent of
p, for any pointsp, g € M we have[, u4(p) A nd(p) = [,d(p) A nd(q), and moreover
this integral depends only on the homology clasg.of

Pretend for a moment that the moduli spagddgs, 1 and M, are, respectively, the total
space and base space of a compact, connected, oriented fiber bundlg, 1 — My;
the fibers would then be mutually homologous compact submanifoldsMy,.1. For any
form ¢ € 2©°P(M;), we would have a product formula

/ ud(p) A pd(q) Am*¢ = (/ pd(p) A Md(‘])) (/ ¢) (1.8)
M1 z M

(assuming compatible orientations), so the simple-type condition (1.2) would be equivalent
to

/Zud(P) A pd(g) = 4. (1.9)

In reality the moduli spaces are not compact and there is no such global fibration. However,
from the current understanding of the forpg(-) one might speculate that the relevant in-
tegrals are supported in a region near the ideal boundakygof1, in some sense of “near”
to be determined later —i.e., that this choice of de Rham representative pushes cohomolog-
ical information out towards the boundary. Of course a random de Rham representative of
a cohomology class can be supported wherever it likese @} is not random, and there
is evidence that its properties near the boundary of moduli space do indeed capture a lot of
cohomological information. For example, consider the five-dimensional moduli spaces of
1-instantons over simply connected manifolds with= 0. In such cases the inverse of a
collar map gives embeddings : N — M1 C B* for A sufficiently small (the image of
T), consisting of instantons of scalg, and one has Donaldson’s theorem that the compo-
sitionz; o : Ha(N,Z) — H2(N, Z) is precisely Poincaré duality [4, Corollary 5.3.3].
The corresponding assertion in de Rham cohomology would be that.q : NR2%(N) -
£22(N) induces the identity on cohomology. But in fact in this context one can show that
limy 071, o g is already the identity mapn the level of form all degrees [10].
There is no reason a priori to expect all such information to be lost when one moves
fromb,. = 0tob,; > 1, the realm of Donaldson invariants. Therefore consider that portion
;H-l,)»o of My+1,5, Near the highest-dimensional boundary stratp x N. There is
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indeed a fibrationM; , ; , ~ — M; whose fibers can be identified with subsets of an
eight-dimensional space of framed ASD connectioanBn(Here/\/I;c denotes the space
of nonconcentrated irreducibleinstantons, and\1; +1.5, the space ofk+1)-instantons
with only a single “bubble”, of charge 1, and scale less than some small numbdarhe
typical fiberZ = Z,,, is itself a bundle ovef0, 1) x N for some smalko, whose fiber over
(A, p) € (0, 1p) x N is the space of “gluing parameters” H@%)(AiT*N, AdP) =
SQ3) (see [4, p. 324)). Sinccié/t;(ﬂAO is such a large portion of the end #f(;_ 1, one
might then expect that an approximate version of (1.9) holds under the assumption of simple
type.

What we show below (Theorem 1.2) is that (1.9) fails in a very precise way: independent
of the topology and geometry &, if Ao is small enough and digt, ¢) is small compared
to Ao (but nonzero), then

/ ud(p) A pd(q) = % (1.10)
Zlo

under certain technical but intuitively reasonable assumptions about theZfjhefaking
alimitasqg — p and then aso — 0, the integral above approaches an integral over the
space of framed instantons &, and this latter integral has the precise vaéleDespite

the technical assumptions, Theorem 1.2 gives a picture obélseone can hope for by
integrating theuq products over the top stratum of the ends of moduli space.

At this stage the reader may wonder why we do not simply take: ¢ in (1.10).

The reason is that for purposes of integration, thgp) turn out to be more singular
than the representativeg;(w) for smoothw. Were we to sep = ¢ in (1.10),% would

be replaced by 0. This discontinuity can be modeled by the following two-dimensional
example. Letd be the upper half-plang(x, 1) € R%|» > 0} and for each. € R let

0r : H — (0, ) be the usual polar-coordinate angle as measured €forf) (so &y, =

((x — LYydr — adx)/((x — L)% + 12)). As forms onH, the i, are all cohomologous

(in fact cohomologous to zero). Howeve, dbo A ddo = 0, while for L > 0 we have
fHdGO Adop = %nz. Essentiallyuq(p) A ng(g) behaves like a quaternionic version of
this example.

The technical assumptions on the filfeaire enumerated as (Z21)—(Z5) in Section 7. The
first three of these assumptions are known to be satisfied by the fiber constructed in [4],
but we have not determined whether the latter two are satisfied. These two are assumptions
on the tangent space ®4)Z, where [A] € Z, and we prove that they are satisfied by
a subspace dfj4) M (the “approximate tangent space”) that we argue is closg 4.
Because this step is only a plausibility argument, (1.10) implies one of two things: either
ud(p) A ug(g) has most of its support in the interior of moduli space (or near higher
codimension boundary strata), or the intuitive picture of the fibisrsignificantly wrong.
Either way, the conclusion is surprising.

Our second main theorem is then the following:

Theorem 1.2. Let N be a compact oriented Riemanniémanifold of arbitrary topology

and geometry and lét> 1. Assume that a typical fibef;, of the fibrationM; ,  , - — M
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satisfiegZ1)—(Z5)of Sectiorv. Thenforany, g € N, the formuq(p) Aung(q) isintegrable
over Z;,, for Ao sufficiently small, and

. . 1
Jim ( im /Z _nap) 2 ud@) -3 (1.11)
while
lim f 1d(p) A a(p) = O. (1.12)
ro—0, Z)\o

The convergence ifl.11)and (1.12)is uniform in p, . Hence ifp,L denotes a smooth
4-form on N of total integrall supported in a ball of radius L about p, thémsing(1.7))

lim | lim
ro—0 \ L—0 Z

By uniform convergence in (1.11) we mean that forealt- O there existi1,8(-) > 0
suchthatif O< A9 < A1 and O< dist(p, ¢) < 8(Ao) then the integral in (1.11) differs from
1 by less thare.

Itis not necessary to take the limits in (1.11) completely independently as langsap
much faster thang — 0. If, for example, we require that di{gt, ¢) = constk(lf"‘ for
somex > 0, and then take a limit as — 0, we again ge%.

Note that if we helgh andq fixed rather than taking lign, , in (1.11), the limitas.o — 0
would necessarily be zero (singg(p) A nd(g) is integrable). It turns out that fer £ p
the integrand in (1.11) is supported in a region in whidh of the order didtp, ¢). Thus if
we wish to extendig(p) andud(S,,,L) to forms on the Uhlenbeck compactification/ef,
with IimLﬁoud(S,,,L) = ug(p) in a distributional sense, theny(p) A ug(p) should be
viewed as the sum of a delta-form supported on the boundary of moduli space and a smooth
form supported away from the boundary.

Theorem 1.2 does not requikeo be in the “stable range” unlike Theorem 1.1. However
(assuming the de Rham-theoretic conjecture), Theorem 1.2 is most interestiig the
stable range, since only then can the Donaldson invafight] - - - [ X,]) be expressed as
a topologically invariant integranyud(wl) Ao A ud(wn).

Additionally, note that like our intersection-theoretic calculation, a posteriori our
differential-forms result is insensitive #o,.. This was not obvious a priori since the dif-
ferential formsuq(-) are nonlocal. Only after the rather detailed analysis in Sections 9 and
10 will it be clear that integrals in Theorem 1.2 are independeht.of-urthermore, even
given the insensitivity téd_., a priori the limit in Theorem 1.2 could have been 4 rather than
%; i.e. the boundary behavior of the formg(p) A ug(g) could have given simple-type
calculus forall manifolds. The conclusion then would have been just that for manifolds not
of simple type, the interior behavior of these forms is more complicated than it is for mani-
folds of simple type. While this hoped-for conclusion is false, it is false in a very precise
and universal way that is interesting in itself. Modulo the technical hypotheses, Theorem
1.2 shows that the restriction pf;(p) A 1g(g) to a neighborhood of the boundary exhibits

(1.13)

~ ~ 1
nd@p,L) A Md(%,L)) =5

0
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delta-form behavior, concentrating with universal amplitude on the boundary-as; —
but exactly% the amplitude the authors had anticipated.

The rest of this paper is organized into two main parts, with Sections 2—4 devoted to
proving Theorem 1.1 and Sections 5-10 devoted to proving Theorem 1.2. The strategy of
proof, and the division of the paper, is as follows:

Let A be a connection obtained by gluing a small bubble onto a background connection
Ap. It turns out that the curvature @& is well approximated by the sum of the curvature
Fp of Ag and the curvaturégg of a standard = 1 instanton, viewed in the correct gauge.
We are thus led to the following model proble@iven a connectiofAg] € M; and two
closely spaced points p and g, for how many triglesk, g) is the sum of the curvaturg,
of Ag and the curvaturefgq of a standard instanton, centered at x with sizand gluing
angle g, reducible at both p and?dn Section 2 we solve this model problem and show
that, for genericAg, the answer is 6.

In Section 3 we construct a family of approximately ASD connections based on an
explicit gluing formula. This is a perturbation, which we denote\dy., 1, of the boundary
region of My 1. We check explicitly that in this family the curvature is well approximated
by Fo + Fsig- By linearly interpolating betweeiy + Fsiq and the actual curvatures of
connections inM;_ 1, we show that corresponding to each generice M); there are
exactly six points inMj1 N v, Ny, with A sufficiently small.

In Section 4 we apply these results to show that if we consider only the boundary region
of the (perturbed) moduli space, we obtain (1.4) with 6 on the right-hand side rather than
64, thereby completing the proof of Theorem 1.1.

Ideally, one would then like to interpolate erMk+1 to My.1. This is quite difficult as
v, andy, are defined by pointwise conditions on the curvature. We know of no pointwise
estimates relating the curvature of an almost-ASD connection to that of a nearby ASD
connection. In order to make use of the integral estimates available in the literature, one
would have to replace, andv, by geometric representatives defined by integral conditions.
While certainly possible, this is beyond the scope of this paper.

We prove Theorem 1.2 by exhibitingy(p) as a purely local piecgioc(p) plus a non-
local remainder. The local piece dominates in (1.11) as p the integral ofujoc(p) A
wioc(¢) approaches a calculable integral®f, with value%, independent afg. (However,
Wioc(P) A mioc(p) = 0.) We establish (1.11) and (1.12) by showing that the integral of the
remainder terms i (p) A u(q) approaches zero ag — 0, independent gf andg. Thus
taking a limit asg — p is relevant only to the purely local part pfy(p) A ng(g) (and
taking a limit asho — O is relevant only to the nonlocal part); the delta-form behavior of
ud(p) A ug(p) is due solely tauioc(p) A wioc(p). The uniformity assertion in Theorem
1.2 follows from the proofs of (1.11) and (1.12), and the final assertion (1.13) then follows
from (1.7).

In Section 5 we begin our work on Theorem 1.2 by constructing the de Rham represen-
tativesug(p). The splitupug(p) = wioc(p) + remainder is based on the “approximate
tangent space” mentioned above. This approximation is built by lifting the action of certain
vector fields orN to B*. In Section 6 we discuss this lifted action (the “canonical flow”),
use it to define the approximate tangent spakas and discuss how close tl#¢, are
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to being tangent to\1. We then exhibit the relation between a fiber constructed from the
canonical flow (whose tangent space is essentially the projecti@ufd of approxi-

mate tangent space above) and the fiber constructed in [4]. This digression is needed to
motivate the technical assumptions (Z1)—(Z5) given and discussed in Section 7. In Sec-
tion 8 we return to the main track, definingoc(p) and computing the limiting integral

of wioc(p) A wioc(g). Sections 9 and 10 are devoted to a study of the remainder terms
ud(p) A nd(g) — mioe(p) A mioc(g). In Section 9 we state the main technical theorem
that yields the pointwise norm of these terms (Proposition 9.2), and use this theorem to
establish that the integral of the remainder terms tends to zerg as 0. Finally in Sec-

tion 10, we prove Proposition 9.2. It is this section that contains the core of the analysis
underpinning the validity of all the earlier calculations. The estimates in Section 10 re-
quire a weighted Sobolev inequality, proven in Appendix A, that the authors have not seen
elsewhere.

2. The model intersection theory calculation

In this section we begin to compare the boundary regionqf 1 N v, N v, with My
by looking at a model problem. Pick a small neighborh@bdf our manifoldN and give
it a flat metric with corresponding Euclidean coordinates.U&e the corresponding ball
in R*. We will denote points either by four real coordinatas$, . . ., x3) or by a single
quaternionic coordinate® + ix! + jx? 4+ kx3. Let p andq be the pointg+L, 0, 0, 0). Let
Ao be an ASD connection oN expressed in a smooth gaugen

An important notational tool is the identification of ASD curvatures witlx 3 real
matrices. LetFy be the pullback tdJ of the curvatureF,, of an ASD connection on
U. Relative to the standard oriented basisAfT*R* (w1 = dx%dx! — dx2dx3, wp =
dx®dx2 —dx3dxl, w3z = dx® dx3—dx! dx?), Fo has at each point three Lie-algebra-valued
components, and so can be viewed as a triple of 3-vectors. We package this triple of vectors
into a 3x 3 real matrix, which we denote bylat(Fp). More precisely, the first, second
and third columns oMat(Fp) are half thev1, w2 andws components of, while the first,
second and third entries of each column refer to the three directien&dy the Lie algebra
of SU(2). Ag is reducible at a point if and only Mat(Fp) has rank 1 (or 0) there.

Of course, this construction is dependent on gauge and a choice of baE fogauge
transformation is a change of basisir{2), and thus changégat( Fp) by left-multiplication
by an element 06Q(3). An orthogonal change of basis TN changesViat(Fp) by right-
multiplication by an element @Q(3). Thus the singular values bfat( Fp), and in particular
the rank ofMat(Fp), are gauge- and basis-independent. We shall frequently be thinking of
curvatures as 3 3 matrices in this way. When the context is clear, we will omit the explicit
function “Mat”.

Now consider a standakd= 1 instanton orR* of scale size. and centey, viewed in a
radial gauge that is singulargand regular abo. There are many such gauges parametrized
by a gluing anglen € SQ(3). For fixed {, A, m), let Fsiq be the curvature of this connection
restricted taJ.
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Let A be an ASD connection obtained by gluing in a bubble with data (m) to the
backgroundig. In Section 3 we shall see tha}, in an appropriate gauge, is approximately
equal toFp + Fsig. This reduces our main question to the following model problem:

When L is small, for what values ©f, A, m), with A small, isFp + Fsg reducible at both
p and g?

Of course, to obtain sensible answers, we must define what we medodiyg “small”.
Pick constantsk > 0 anda € (0,2). We say is small (or that the corresponding
bubble is small) ifA < KL*. The set of gluing data for small bubbles ngaandq is
B =U x (0,KL¥) x SQO@3). Letv, (resp.i,) be the set of pointsr, y, m) € B such that
Fo(p) + Fsia(p) (resp.Fo(q) + Fsid(q)) is reducible. We must count the intersection points
of v, and,.

Recall that the singular valueg > o2 > o3 > 0 of a 3x 3 real matrixM are the
square roots of the eigenvaluesif M. ForM generic, these are distinct and positive. The
nongeneric cases are as follows: Matrices in a codimension-1 sebhave0. Matrices
in a codimension-2 set either havg = o2 or o0, = o3. Matrices in a codimension-4
set haver, = o3 = 0; these matrices have rank 1 or 0. Matrices in a codimension-5 set
haveo;1 = o2 = o3; these are all scalar multiples 8£3) matrices. Only the zero matrix
(codimension-9) hag; = 02 = 03 = 0.

Theorem 2.1. Fix K > 0,« € (0, 2), and a background connectiofiy. If the singular
values of MatFp(0)) are all distinct, then for all sufficiently small, b, and v, intersect

at exactly six points. These six intersections are all transverse, and the local intersection
number is+1 at each point

Remark We shall see that, under the assumptions of the theorem, the intersection points
all havex = O(L?). However, when two of the singular values Mft(Fo(0)) are the
same, then there are only four intersection points wite O(L?). In that case there are
generically four additional intersection points with= O(L). The intersection number of
v, andy, then 4 ife > 1 and 8 ifo < 1.

Before beginning the proof of Theorem 2.1 we need some basic facts absutl
instantons orR* = H, we need to fix some conventions, and we need a linear algebra
lemma. Think ofSU(2) as the unit quaternions withu(2) as the imaginary quaternions.

The connection form of a standard instanton of scale size 1, centered at the origin, is
Astqy = Im(x dx/(1+ Ix|2)). The curvature of this connection is

. dx dx _ 2im+ 2jwz + 2kws
T T P2 T T A+ xP?2

(2.1)

Note that the matriMat(Fsiq,) is 1/(1 4 |x|?)? times the identity matrix.

That is in the usual regular gauge, in whigh~ ¢—1d¢ as|x| — oo, whereg(x) =
x/|x|. We do a gauge transformation #y? to get a radial gauge in which = O(|x|~3) as
|x| = oo (andinwhichAis singular atthe origin). We then do a further gauge transformation
by a constangg to get the most general radial gauge with this property. igf be the
curvature form in this gauge. We havgy = g51¢Fstd3¢‘lgo. In terms of matrices,
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Mat(Fstg) = p(ggl)p(qS)Mat(Fstdo), wherep is the standard double covering map from
SU2) to SO3); the three columns ob(¢) arepip 1, pjo—Lt, andpke—1. The matrix
o(go) is our gluing anglen.

Now suppose that we haveka= 1 instanton, centered at a pointvith scale sizé.. The
curvature matrix, expressed in the exterior radial gauge of gluing amgte

32 1 (XY
e ) @2
Note that the matridMat(Fsig(x)) is a positive multiple of a8 Q(3) matrix. The multiple is
determined by and|x — y|, while theSQ(3) matrix is determined bgnand(x —y)/|x — y|.
(We henceforth will not explicitly distinguish between a curvature and its matrix.)
Our problem is thus one of adding positive multiplesS#(3) matrices toFy(p) and
Fo(g) to make them reducible. The following lemma is essential.

Lemma 2.2. Let P be a3 x 3 real matrix with singular values; > o2 > o3 > 0. If these
singular values are all distinct, then there are exactly two p&its\f) € (0, co) x SQ(3)

for which P 4+ sM has rankl (and no pairs(s, M) for which P + sM = 0). In both cases

s = o2(P). If exactly two of the singular values of P are the same and nonzero, then the
two solutiong(s, M) coalesce to a double root

Proof. Let W = —(P + sM). AddingsMto P to make it reducible is the same as decom-
posing—P assM+ W with W reducible. We therefore count the ways to decompose a
matrix — P into the sum of a positive multiple of aBQ(3) matrix and a rank 1 matrix.
First we show that the desired decompositions can ooolyrwith s = o2 by assuming a
decomposition- P = sM+ W and computingr2(P). Multiplying P on the left and right

by SQ(3) matrices does not change the singular values, but does allow usitb=set and

put W into the form

a b 0
w=|0 o 0]. (2.3)
0 0 O
Then
(s+a)? (+ab O
P'P=|(G+ap s2+p2 0|. (2.4)

0 0 52

One of the eigenvalues dt' P is obviouslys? with eigenvector0, 0, 1). Restricting to
the upper left 2x 2 block, we subtract?/ and get a matrix whose determinants252,
is nonpositive. Thus at most one eigenvaluePdfP is greater than? and at most one
eigenvalue is less thar. Sinces? is the middle eigenvalue @' P, oo(P) = s.

Next we show thaP 4+ sMcan have rank 1, with = o2(P), in two ways. By multiplying
on the left and right bysQ(3) matrices, we can take diagonal with entried11 > Py >
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| P33]. Next we look for orthogonal matrices of the form

—cos® O  sind
My = 0 -1 0 . (2.5)
sing 0 cow

We then have
P11 — Pcos® O Porsing
P +sMy = P + PyoMy = 0 0 0 . (2.6)
Poosing 0 P33+ Pypcosf

This matrix has an obvious null vect(, 1, 0). P +sM, has rank 1 (or 0) if and only if there
is a second null vector. To see if there is a second null vector, we reRtiiciVy to the 1-3
plane and take its determinant, which equai?zz2 + P11P33+ (P11 — P33) Pp>c0osH. This
is a periodic function of with a single maximum of P11 — P22)(P22+ P33) até = 0and a
single minimum of—(P11+ P22) (P22 — P33) atd = . If P11 > Pro > | P33, the maximum
and minimum values have opposite signs, so the function must cross zero exactly twice at
the pointsd = £ cos ([PZ, — P11Ps3]/(P11 — P33) P22). If P11 = Popor Pag = — Py,
then the maximum value becomes zero, whil®i$ = Ps3, then the minimum becomes
zero. In these cases we have a double roét-atO or . Finally, if P11 = P22 = P33, then
the function is identically zero and we have an infinite number of roots. This corresponds
to the originalP being a positive multiple of aBQ(3) matrix.

Finally, we show that these are the only possible decompositions wittP,». Suppose
thatM is anSQ(3) matrix with P + sM having rank 1. Then every 2 2 block of P +
sM has determinant 0, and in particular the upper left 2 block has a null vectop.
However, P11 and P,; are both at least, so |Pv| > s. The upper left corner oM has
operator norm at mos, so|sMv| < s. Thus we must haviPv| = s|Mv| = s = Poo.
If P11 > Pyp, this means = (0,1, 0), soMv = (0, —1, 0), soM must take the form
(2.5). The caseP1; = P22 must be checked separately, but leads only to the solution
M = diag(—1, —1, 1). O

The form of the explicit solutions found above also demonstrates the continuous de-
pendence oM on P. Expressed invariantlyy is a rotation byz about an axis. This
axis is orthogonal to the second principal axis ®f P, and makes an angle/2 =
(£3) cos (02 £ 0103]/[(01 £ 03)02]) With the third principal axis oP T P, where thet
is determined by the sign of the determinanPofA small change i can only changé
by an amount of ordegs P|/min(c1 — o2, o2 — 03), and, by first order perturbation theory
(integrated to get rigorous bounds), can only change the principal axesfby a similar
amount. Thus 8 P is a small perturbation oP, the norm of the corresponding is
bounded by a constant timgsP | /min(o1 — o2, o2 — 03).

Not surprisingly, this stability breaks down when we approach the double root. If two
of the singular values are equal, then a small perturbation may chrmyeas much as

OW/16P)).

Proof of Theorem 2.1. Lets, be the second singular value E§(p), and letM,, € SQ(3)
be a matrix such thafip(p) + s, M, is reducible (with similar definitions for, andM,).
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Letsg be the second singular value&f(0). Note thatg > 0 since the three singular values
of Fo(0) were assumed distinct. Singg ands, are within QL) of sg, we can bound,
ands, away from zero.

We shall count the ways to simultaneously makg(p) = s, M, and Fsi(q) = s, M.
The condition for the standard curvaturgq to have magnitude, atpis

AZ
o
(ly — pl2+a22 =P

or equivalently

2241y = plP =1/ sp. (2:8)

Aslongasy — p| < 1/2 /s, there are two solutions to (2.8), while for— p| > 1/2, /s,
there are none. Whely — p| < 1/2 /s, one solution has > 1/2, /s, which is greater
thanKL® for L small. The other solution qualifies as smallyif— p| is small enough and,
for |y — p| < 1/./5p, is approximately. = |y — p|2ﬁ. As a setirR® = (N, 1) space,
the solutions to (2.8) are a 4-sphere. Projected dhtihey form (two copies of) a 4-disk.
In either case, only a small subset of solutions qualifies as “small”.

The interesting question, of course, is how many times we can solve the equatipns for
andq simultaneously. We begin with Eq. (2.8) and the corresponding equatignToe in-
tersection of two 4-spheresRp is a 3-sphere. Projected oritpwe get a three-dimensional
ellipsoid, possibly degenerating to two disks. As before, only a small patch of the ellipsoid
(or alternative part of one of the two disks) gives a small enough valuelbis this region
that we consider.

Recall thap andq are at+=-L, where we are using quaternionic coordinates.lFemall,
sq = Sp + O(L). Lets,, be such that 2./s,, = 1/./sp, + 1/./54. Let A = (1) /s —

1/ /s))/L. ASL — 0O, s, = 50+ O(L?), while A approachesr(dsp/dL)|L=o/sg/2.
Let yo andy, be the real and imaginary parts uf Adding and subtracting (2.8) to the
corresponding equation forwe obtain

@2.7)

—4yo=2A, A2+ L%+ ¥+ InP= A/ (2.9)

Plugging the first equation into the second, we get

22 (1+ A—2)—L+L2+|y||2=o. (2.10)
16 Sm

This equation shows that, and thusyg, may be viewed as functions gf. As long as

L?+|y1? < 1/./5n there are two solutions to (2.10), one of which has (L?+(y11%) /5,

the other of which has ~ ((1 + A2/16)\/§)*1. The first solution hag < KL* if and

only if |y| is small enough, while the second solution alwayshas KL*. Let Rx o be

the largest number such thai| < Rk, impliesi < KL*. Henceforth we consider only

“admissible”y, i.e. those with|y;| < Rk . ForL chosen small enough, as we assume

henceforth itisR% , ~ KL%/ /5, — L? ~ KL*/ /s, sincea < 2. Note that

Yo = —3AA & — (L% + D) /smA. (2.11)
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\ radius =0(L1- %/2)
Admissible solutions
(vo.yp to (2.9)

Fig. 1. Diagram for proof of Theorem 2.1.

Hence for admissiblg, we have y|| < const L*/2and|yg| < const L*. Letr = (yo(0), 0)
be the unique admissible point where the ellipsoid of solutignsy;) to (2.9) hits the real
axis. Sincer| = O(L?), r lies on the line segmei, and the ellipsoid has curvaturg¢D
atr (see Fig. 1).

We still have to get th&Q(3) matrices right. This means simultaneously solving the
equationsn~tp((y — p)/ly — p) = M, andm=1p((y — q)/|y — ql) = M, for m.If
a solution exists, it is obviously unique. A solution exists if and only €y — p)/|y —
Doy —a)/ly —q) = M, M, Letg(y) = (5 — Py — @)/I(y — P)(y — @)|. We
must count the points on our 3-disk (of small solutions to (2.9) and (2.10)) for which the
SQ3)-valued functiono(g(y)) equalsM;qu. Note that

gy =—1I +2%<1+0<(|yo|/L>2>> +O((nl/L)?) for Iyl < L, (2.12)
while
L
g(y)=1+2|Ty|'2<1+0(<|yo|/|y||)2>)+O<(L/|y||>2> for > L. (213)

In view of (2.11), we can replace(@yo|/L)?) in (2.12) and Q(|yo|/|»])2) in (2.13) by
O(L?) and QL%), respectively.

Observe thatl./Rk o iS O(LY%/2) and hence goes to zero As— 0. On the disk of
admissibley;, the mapg covers all ofSU(2) except for a ball of radiusL~*/2 around the
identity for some constant Sincep is a 2—1 mapp(g(y)) hits all of SQ(3) twice, except
for a ball of radius 2L1-%/2 + O(L2~*) around the identity, which is only hit once. The
number of solutions to our problem depends on whether, for SmMI;qu is in this ball
or not.
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If the singular values of(0) are distinct, then by Lemma 2.2, there are two distinct ma-
trices M1 2(0) for which Fp(0) + 02(0)M has rank 1. By the comment after the proof
of Lemma 2.2, the two matrices fqgr and g satisfy M12(p,q) = M12(0) + O(L).

As L — 0, M1(p)~*M>(q) and M>(p)~1M1(q) are bounded away from the identity,

but M1(p)~IM1(g) and Mo(p)~1M2(g) are within QL) (and hence within @.1-%/2 4

O(L?%)) of the identity. Thus we have two configurations(in A, m) space that give

spMa1(p) atp ands, M2(q) atq, two that gives, M»(p) at p ands, M1(g) atg, one that

givess, M1(p) atp ands, M1(q) atgand one that gives, M>(p) atp ands, M2(q) atg. A

total of six solutions in all.

On a codimension-2 set of background data, the background curvature at the origin has
two equal singular values, $d1(0) = M2(0) andM1 2(p, ) = M1(0) + O(LY?). In that
case all four possibilities havel,, M, = 1+ O(LY?). If « > 1, this is within ZL}~*/2
of the identity for small enough, and so each possibility yields one solutionalf< 1
and the QLY?) term in the expansion a¥1.2(p, q) in powers ofL is nonzero, then each
possibility yields two solutions.

Finally we consider the orientations of our solutions. It is not immediately clear that all
solutions have the same orientation, but in fact they do. The problem of matching amplitudes
is the same in all cases. The problem of matching gluing angles reduces to the intersection
of two 3-cycles in a 3-disk SQ(3) (i.e., all possible pairgy|, m)), and is easily seen to be
transverse. The intersection numbers are continuous functiaifs @ind M, as long as a
solution continues to exist. Sending, around a noncontractible loop8Q(3) interchanges
the two solutions associated to a given gai,, M), which shows that the two solutions
for any given(M,,, M,) have the same orientation. Also by continuity, this orientation is
the same for all pairgM,, M,).

All that remains is to compute this orientation in one case.shet s, = 1, M), =
M, = I, and look near the solution with = 0 andm = I. The varieties), andv, are
just the zero sets dfsig(p) — 1 andFstd(q) — I, which we view as functions afy, A, m).
Taking derivatives, we find that changeqin A, m) give the following first order changes
in Fstd(p) and Fsa(q): ~
1. Increasing. increases the magnitude of bdthy(p) andFsq(g) without changing either

direction.

2. Increasingyg increases the magnitude 64(p) and decreases that 6fig(¢), while
keeping the directions fixed.

3. Increasingy; (resp.y2, y3) rotatesFsq(p) in the direction defined by the Lie algebra
element—i (resp.—j, —k), and rotatesFsig(p) an equal amount in the directiohi
(resp.+j, +k).

4. Rotatingmin any direction rotates botRsig(p) and Fsig(g) in the opposite direction.
>From this we deduce that the JacobjidtFsiy(p), Fsid(g))/d(y, A, m)| is positive, and

that the local intersection numberigf andy, is 41 in this case. Thus the local intersection

number ofv, andy, is +1 in all cases. O

Having proven Theorem 2.1, we consider the question of stability. How much do our
intersection points move around if we charldg or M, or s, or s, slightly? Sincefo+ Fstd
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is only an approximation to the true curvature of a connectiavp, 1, our results must
be stable in order to be meaningful.

Let x be the map that takes, A, m) to (Fsig(p), Fsid(g)). Near our solutions, d is
never close to singular. By changiangand one component gfwe can adjustFsig(p)| and
| Fsta(q)| independently, while by adjusting and the remaining three componenty afe
can adjust the directions @&q(p) and Fsig(g) independently. It is not difficult to estimate
the matrix elements afly) 1. Some are @L), some are Q), and some are @.2). If we
know the requiredFstq (p or g) to within €, we knowm to within O(e), y to within O(e L),
and» to within O(e L2). In short, small errors in the input data result in only small changes
of the locations of our intersection points(n, A, m) space.

Finally, we consider a perturbation of our model problem that is more directly applicable
in the sequel. LeFo(x) be the curvature of the background connection in the standard radial
gauge about the gluing point(That is, use the original connectidi to trivialize the fiber
overy, and then use parallel transport radially outwards fyaimtrivialize the bundle over
U.) We wish to count the number of ways to make+ Fsig reducible at botip andq.

Theorem 2.3. Under the assumptions of Theor@ri,the number of ways to makg+ Fsq
reducible at p and gcounted with sighis the same as the number of ways to méke Fsiqg
reducible at p and gcounted with sigjy namely+6.

Proof. We first put our background connection into a radial gauge with respect to the origin.
This is a fixed gauge, and Theorem 2.1 applies. Sificand Fy are related by a gauge
transformation, the singular values B§ and Fy are the same. Thus we must solve (2.8)
and the corresponding equation épeexactly as in Theorem 2.1, with the same values,of
ands,. We then solven™o((y — p)/Iy — p) = My andm™to((y — 9)/ly — ql) = My
for mas before. The only difference in our analysis is thigt and M, are now functions
of y. We compute the extent to which they depend/on

Let A be a connection in radial gauge with respegt,tand letA’ be the same connection
in radial gauge with respect 9. The gauge transformation that relates these, evaluated at
the pointp, is the holonomy around a triangle frgprto y to y’ to p, and so its difference
from the identity is bounded by the sup norm|éf;| times the area of the triangle (see
Fig. 2).

In our caseA is the background connection, g6 | is fixed and bounded, andandy’
are restricted to lie on the ellipsoid of solutions to (2.9) and (2.10) vithand|y/| both
less thankk .. Note that the area of a triangle is bounded by half the product of the length
of anytwo of its legs. Because the curvature of the ellipsoid of solutors (yo, v) is
O(1) at admissible pointsyo — y;| is bounded by a constant timgs — y;|. As a result,

|Mp(y) — Mp(y)| < const x y/L? + |y[2|y1 — {1, (2.14)

while

|M,(y) — M,(0)| < const x L|y|| (2.15)
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Admissible solutions
0’0: yr) to (29)

Fig. 2. Diagram for proof of Theorem 2.3.

with similar estimates fol,. The second result is an estimate & itself, while the
first leads to a bound on the derivative Mfwith respect toy,. By (2.11),L2 + |y|?2 <
const(L? + |y|2), so we obtain

< const x /L2 + |y ]2 (2.16)

As before, we look for solutions tp(g(y)) = M;qu, where now the right-hand
side depends oy. We break the disk of radiuRx , = O(L%/?) into two pieces, an
inner disk D1 and an annulu®,. The radii will be chosen such that dpy the estimate
(2.14) is strong enough to allow implicit function theorem arguments to apply. Here the
solutions top(g(y)) = M;l(y)Mq(y) are but small perturbations of the solutions to
p(g(y) = M;l(O)Mq(O). On D, the estimate (2.15) will be strong enough to show that
there are no solutions to(g(y)) = M;l(y)Mq(y). Taken together, this will prove the
theorem.

On the diskD1, the implicit function theorem will apply as long as the smallest singular
value ofd(p o g)/dy, is at least twice the largest singular valua?OM;qu)/ay|, which
by (2.16) is bounded above by a multiple@? + |y;12)/2. Computing the derivative of
p o g is an easy geometrical calculation, and one finds that all singular values are bounded
below by a constant times/ (L2 + |y |%). ComparingL /(L2 + |y |2) to (L2 + |y |2)Y?,
we see that the implicit function theorem applies whenéyglis smaller than a constant
times L3, and in particular whenever,| < L2 (andL is sufficiently small). We take
the radius ofD; (and the inner radius dby) to be L/2.

Now considery; € D. If « > 1, thenD3 is empty, so we assume < 1. By (2.13),
1T — p(g(Y)| = 2L/Iy|(1 + O(L*)) + O(L?/|n|?). Sincec1LY? < |y| < c2L*/?,
3L < |I — p(g(»)| < caL*?. Now recall thatM,*(0)M, (0) is either bounded
away from the identity or is within @Q.) of the identity (e.ng_l(p)Mz(q) is bounded

Mp

an
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away from the identity, WhileMl_l(p)Ml(q) is within O(L) of the identity). By (2.15),
M;l(y)Mq (y) is also either bounded away from the identity or withioclQof the identity
on Dy. Thus|I — M, *(y)M, ()| can never be betweesL'~*/? andcs L2, so there are
no solutions tg (g(y)) = M, *(y)M,(y) on Dy. O

3. The perturbed moduli space

In this section we show that the model problem of Section 2 correctly describes the inter-
section ofv,, v,, and a perturbation (denoted lz)%tkﬂ) of the boundary region of1;.1.
M1 is parametrized by quadruplédo, y, A, m), whereAg € M is a background
connection, and the glued-in bubble has sizeentery and gluing anglen. We construct
M1 by an explicit gluing formula and show that, in the relevant region, the curvature of a
connection inM;1 is well approximated by the sum of the background curvafigrand
the curvaturefgq of a standard instanton of sizecentery and gluing anglen. Our model
problem was essentially to make this sum reducible ahdg. By interpolating between
this sum and the actual curvature of a connectioMm+1, we show that the results of
Section 2 carry over almost word for word.

As before, we pick a background connectigg € M; and constantX > 0 and
a € (0, 2). Let the neighborhood in N, and the corresponding neighborhddaf the
origin in R%, be as in Section 2. We now allow bubbles to be glued in anywhere (not just in
U), so the seB of gluing data is &0, KL*) x SQ(3) bundle oveiN, with local coordinates
(y, A, m) € N x (0, KL¥) x SO3). When the center of the bubble isth we identify the
center point irN with the corresponding coordinate ith and call both pointy. For each
(y, A, m) € B, letF be the curvature of the connecti¢fg, y, A, m) € Mk+1. The variety
v, (resp.v,), restricted to the fiber oM, 1 over A, is the set of pointgx, y, m) € B
such thatF~(p) (resp.F~(q)) is reducible. We must count the intersection points of
andv,. In this section we prove the following theorem.

Theorem 3.1. Fix K > 0,« € (0, 2), and Ag € M. If the singular values of4,(0) are
all distinct, then for all sufficiently small L, the intersection number gfv,, and the fiber
of My1 overAgis +6.

We begin by constructing the spadé, 1. For now, assume we are gluing a bubble
of sizex in U with the center point at the origin. There are three natural length scales
determined by the background connectitg The first is the length scaleFAo(O)rl/2 of
the background curvature at the origin. The second is the Iength|§§:@t®)|/|VA Fa,(0)]
at which this curvature varies. L&3 be the smaller of these two length scales. Finally,
let so be the second singular value Bf,(0). It is easy to see thap < 1/RZ, but there is
no simple lower bound fafp (although, by assumptiorg is always positive). As we have
seenso measures how faF4,(0) is from being reducible.

Now pick additional length scale®; and R», which can depend ok, Rz andsg such
that R? < 107°AR3 andR5 > 10P1/,/so. Wheni < Rs, which is the only case we
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will consider, we wanth, <« R; <« Rz <« Rs. The points of interesk will all have
R1 < |x| < R2. The number 19is of course arbitrary. It is just chosen large enough that
we can safely ignore small numerical factors.

Let B(r) be a smooth monotonic function that equals zerorfok % and equals 1
for r > 2, and such thag’ < 1. We define cut-off functiongi(x) = B(|x|/R1) and
B2(x) = 1— B(|x|/R2).

Let Ag be the background connection expressed in a smooth fixed radial gauge with
respect to the origin. Letsig be the connection of a standard instanton of sieepressed
in a radial gauge that wingularat the origin and regular ab. (This gauge is not unique;
it depends on a gluing angl®. See the discussion before expression (2.2).) Note that
|Astdl ~ A2/r3 for r > i, while |Ag| ~ r|Fa,| = r/R2 for r < R3.

Our point(Ag, 0, A, m) € /\7lk+1 is defined by the connection form

A" = B1Ao + B2Astd. (3.1
We compute

F=Fy=dA + A AA = B1Fa, + B2Fagy + (BZ — B1)Ao A Ag
+(B3 — B2)Astd A Astd+ dB1 A Ao + dB2 A Asid
+B1B2(Astd A Ao + Ao A Astd), (3.2)

and the interpolating 2-form
Fy =t(Fag+ Fstd) + (1 —1)F, (3.3)

where 0< ¢ < 1.

If the bubble is to be glued in at a potrather than at the origin, we must adjust the for-
mulas as follows. Firstsupposes U. TakeAg as the connection of the background in radial
gauge with respect gg(not with respectto 0). The quantities R1, R2, andR3 are computed
from the curvatureF4,(y), not F4,(0). The connectiomsq is in a singular radial gauge
with respect tg (not with respect to 0). The cut-off functions gtgx) = B(|lx—y|/R1) and
B2(x) = 1—B(Jx—y|/R2). With these modifications, we still have = B1Ap+B2Astq, and
formulas (3.2) and (3.3) still apply. Fer¢ U, just apply the same formulas, using geodesic
normal coordinates arounydIn this case the “standard instantofigiq is no longer exactly
anti-self-dual, but becomes anti-self-dual in the> 0 limit. The gluing anglendepends on
alocal trivialization, but the set of gluing angles is invariant. This defines the gpiage for
all'y.

In Section 2 we distinguished notationally between radial gauge with respect to 0 and
radial gauge with respect 0 calling the background curvatuf® in the first case andp
in the second case. Theorem 2.1 discussed makKing Fsiyg reducible atp andq, while
Theorem 2.3 discussed makifg-+ Fsiq reducible ap andg. In this section the background
connection isalwaysin radial gauge with respect to the gluing pojnWith only one case
to consider, we always writgg, neverFyp.

Note that we do not use the gluing formula found in standard works such as [4]. Tradi-
tionally, one takesA” = (1 — B2)Ao + (1 — B1)Asg, SO that the resulting connection is
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exactly flat in the annulus with radii, and%Rz aroundy. This makes identifying the
bundles on which and Agq live conceptually easier. However, such a procedure makes
for a perturbed moduli space on whieh andv, intersect nontransversely, sinég, is
reducible, indeed zero, on the entire annul®s 2 r < %Rz. This makes the intersection
number effectively impossible to compute.
Instead, we allow the supports 8f Ag and B2 Asig to overlap as in Taubes’ work such as
[16]. This allows us to observe the interaction between the background connection and the
glued-ininstanton. Inthe Donaldson and Kronheimer [4] method, the interaction only occurs
when we go from our explicit approximate ASD connection to the true ASD connection
(something we have relatively little analytic control over). In our method, the interaction is
seen at the level of the approximate connectiéwhich we can calculate. Moreové?;“, is
much smaller thaW/j,, (in the L2 norm), so our method should give a closer approximation
to the properties of the true moduli space.
Letv; , (resp.v; 4) be the set of gluing datéy, A, m) with A < KL for which F;” (p)
(resp.F, (g)) is reducible. Ify is not in U, then for small enough, the connection form
nearp is exactly Ag. By assumptionFp is not reducible at the origin. For small enough
L, thereforeFy is not reducible ap, and F; (p) = Fo(p) is not reducible. We may there-
fore assume, without loss of generality, that our gluing pwiistalways inU. Indeed by
picking L small enough, we may assume tlyas in an arbitrarily small neighborhood of
the origin, and therefore thdfy(y) is arbitrarily close toFp(0). Thus we may take the
length scalesk1, R2, and R3 to be independent of (althoughR1 and R, may depend
onx).
We consider five possibilities:

lp—y| < %Rl (pis in the “interior zone”, wherg, = 0 andgz = 1),

%Rl < |p — y| < 2R (pis in the interior “shoulder”),

2R1 < |p — y| < 3R (pis in the “plateau”, wherg, = f, = 1),

%Rz < |p — y| < 2R2 (pis in the exterior “shoulder”), and

|p — y| > 2R (pis in the “exterior zone”, wherg, = 1 andg, = 0).
As in Section 2, we will be identifying curvatures with-33 real matrices. The phrase
“the second singular value &, for example, is shorthand for “the second singular value
of Mat(F™)”.

The problem of Theorem 2.3 was to fimgl ,, v1 , and count their intersection points.
In that problem condition 3 always applied with — y|? & A/ /5p- We will show that
F{ (p) being reducible with. < KL* also implies condition 3, and thaf , is a small
perturbation ofvy, ,. We establish condition 3 by showing that the other conditions lead to
contradictions.

We begin by considering condition 1. Where— y| < %Rl, A’ = Agqg has an ASD
curvature, sdv, = F; = tF 4, + Fstq. FoOr F; to be reducible ap, we need Fsi(p)| = ts,.
Thatis,z2 + |p — y|? = »/./TS,. This quadratic equation has two solutions, one Wit
lp— y|2\/ts_, the other withh ~ 1/, /IS, but both of them are consistent with condition 1.
Sincelp—y| < Rg, s, is close tosy. Sincelp— y|2 < R? < 107%AR3, while /Iso < 1/R3,
one cannot have ~ |p — ylzﬂ. The second solution has~ 1/,/tS, > Rz, which
contradictsh <« R3. Thus condition 1 is impossible.

arwbnE
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If pis in the interior shoulder, we have additional terms to consider:

F, = Fsd+ (t + (L= D)B1) Fag + (L — D[(B? — B1)Ao A Ao+ dB1 A Ag
+B1(Astd A Ag + Ag A Astd)]- (3.4)

The ASD part of the terms aftéfsg can be bounded in norm by 2 + 4R1/R5 +4/R3 +
A?/R?R3 < 100/ R3, and so the second singular valug®fs within 100/ R of the second
singular value offsiq. For F;~ to be reducible| Fsg| can be at most 10/0?%. Thus we need
A/(A2+|p —y|?) < 10/R3, which in turn means that either> 75:R30r . < 100R?/Rs.
The first is not allowed ak is assumed small. The second contradicts the definitiaty of
So condition 2 is also impossible.

If pis in the exterior zone, we hav§ = Fa, + (1 — ) Fstg, SO We need./(A% + |p —
y1?) = /sp,/(1—=1), or equivalentlyr = (A2 + |p — y2)/s,/L—1). But|p — y|* >
2R3 > 10Pr/ /50, 50,/s5,/(1 — 1) always exceeds/ (22 + |p — y|2). So again we have a
contradiction.

If pis in the exterior shoulder, we have

F =+ (1—0B2)Fsa+ Fap+ (1= D[(B5 — B2)Astd A Astd + dB2 A Ast
+B2(Astd A Ag + Ao A Astd)]- (3.5)

The ASD parts of the terms other thdh,, have total magnitude bounded bY/R5 +
A4/RS + 22/RS + A2/R3RZ < 1002/R§ < 1071159 < 10720, But F4, is a distance
greater thar%sp from the nearest reducible matrix, $p (p) cannot be reducible.

Thus for all points iny, ,, condition 3 applies, and here the analysis is relatively simple.
The cut-off functions are both 1, §0(p) = Fay + Fstd+ (1 — 1)(Astd A Ao + Ao A Astd)-
This last term has magnitude boundedAByR%Rg, and changes only slightly &s, A, m)
are varied. It can thus be treated as a perturbatidrygf We perturbvy , to v, , iteratively
(as in the standard proof of the inverse function theorem): Given a pointjncompute
(1—1)(an Ao+ Ag Aa), use that to adjusty, A, m), compute the change (A — 1) (Asig A
Ao+ Ao Aa), adjust(y, A, m), and so on. The iteration converges geometrically. Similarly,
a point inv; , can be perturbed to a point in, ,. Of course, the same analysis applies to
Vtg-

Now we consider the number of intersection points0f andv; , as a function ot.
The only way the intersection number can change is if intersection points appeared or
disappeared at the ends of, or v; ,. However, we have shown that such intersection
points can only occur when bothandq are in the plateau. In the proof of Theorem 2.3,
we saw that, fom > L2 buta < 1 (e.g.,» ~ KL%), the points ofvy , are bounded
away fromvy ,. Since condition 3 applies, fat ~ KL“, v; , and v, are close to
v1,, andvy 4, respectively, and so are bounded away from each other. Thus intersection
points betweeny , andv; , may not appear from or disappear to the boundary. Thus
#(vo,p N vog) = #(vy, Nv1y). By Theorem 2.3, the latter number 46, regardless
of Ag.
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4. Computing the Donaldson invariants

In Sections 2 and 3 we saw that, for a fixed generic background connection, there are
six ways to glue in a small bubble ngaandq so as to make the curvature reducible at
p andg. In this section we demonstrate that this is sufficient information to compute the
contribution of the boundary region g1, to the simple type condition. For generic
choices of representatives (of the classes otherhian andi.(¢)), and for generic choice
of the location of the origin of our coordinate system, the boundary region contri@ytes
of what is needed for simple type.

We continue the notation of Sections 2 and\3,. 1 is the perturbed moduli space and
U is a fixed ball inN with a Euclidean metric, which we identify with a neighborhob,
of the origin inR*. For fixedK, o, L, let M2, be the subset of4;1 with & < KL*. Letw
be a formal product of cycleg]i], ..., [X,] € H.(X) such that degu(w)) = dim(My),
so that the Donaldson invariabt(w) is computed on thkth moduli spaceV.

We assume that the clas4g¥;]} are represented by smooth submanifdlds} in gene-
ral position. In particular, a subset of the;} can intersect only if their codimensions add
up to 4 or less. Pick tubular neighborhodds;} of {X;} small enough to have the same
property: a subset of theZ;} can intersect only if the codimensions of the corresponding
X;'s add up to 4 or less. Similarly, we assume that fhes do not intersect our fixed
ball U. Choose a geometric representatieof eachy.([Z;]) that depends only on the
connection restricted t&;. This may be done for the one-, two-, and three-dimensional
cycles as in [4], and for the zero-dimensior®ls as in [4] or [13]. (This allows us to
identify the geometric representative @of[ X]) on B, with the geometric representative
of u([X]) on Biy1. In each case it is the set of connections whose restrictidh satis-
fies a certain condition.) Note that the codimensiorVpfn B is the codimension of;
in N. LetV,, = n;V;. V, is a geometric representative pfw). Generically,V,, will
intersectM; at a finite number of points (this number, counted with sign, is the Don-
aldson invariantD(w)), and each of these points will exhibit generic behavior. In partic-
ular, for each such poirtg, we can assume thdtat(F4,(0)) has three distinct singular
values.

Theorem 4.1. Fix U, w, K > 0,and« € (0, 2). For generic choices o, as described
above and for all sufficiently small L, the intersection numbek ; with V,, N v, Ny,
is6D(w).

Proof. We need to show that the only way for the boundary regioovf, 1 to inter-
sectV,, N v, N, is if a bubble is pinching off neap and g, while the background
connection inM; is contributing toD(w). We then must demonstrate that, under these
circumstances, the problem reduces to the counting problems studied in Sections
2 and 3.

Suppose we have a small bubble centered at a gdmt is not in0. The pointy can
lie in at most four of theX;’s, with the corresponding.;’s having total codimension 4 or
less. Recall that we are using the explicit formula (3.1), and that outside a neighborhood
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of y, the new connection islenticalto the background connection. For smaltherefore,
the bubble inserted at has no effect on the connection restricted to the remaiditsy
(which we index byj). Therefore for a connectiofio, A, y, m) € M1 to lie in N; V;,
the background connectiofiy € M; must lie inN;V;. However,M; has dimension 8
less than/\;lkﬂ, while N; V; has dimension at most 4 more thasV;. Since the dimension
of My is less than the codimension@f V;, N; V; N M is generically empty.

Next we consider the case where a small bubble is cente[édﬁhen{zj} is equal to all
the cyclesy except at the two pointsandq. For smallx, on each of théfj’s the connection
form is equal to the background connectidg, which must therefore be in; V; N M;.
However, now the dimension @¥1; and the codimension of; V; match.n; V; N M is,
by our genericity assumption, a discrete set of points, whose number (counted with sign) is
the Donaldson invariar® (w). For each of these points, the singular valuedlaf( F4,(0))
are distinct.

By Theorem 3.1, for each such backgroutgland forL small enough, there are exactly
six values of(x, y, m) such that(Ao, A, y, m) € M. ; has reducible curvature ptandg.
Furthermore, the intersection numbers for the local problem a#elaiNow the orientation
of M?, , is the same as that 0¥t x U x (0, KLY) x SQ(3) [3] [Section 3].

Thus the contribution of point&g, A, y, m) to D([p] - [¢] - w), for fixed Ag, is exactly
six times the contribution ol g to D(w). Summing over the finite s¢# g}, we get that the
contribution of My 1 to D([p] - [¢] - w) is 6D(w). O

5. Differential forms and the u-map: introduction

Theorem 1.1, restated precisely as Theorem 4.1, is one of the two major results of this
paper. It quantifies the contribution of the boundary region of moduli space to the geometric
representative computation of the Donaldson invariants that appear in the simple type re-
cursion relation. The remainder of the paper is a proof of Theorem 1.2, which quantifies the
contribution of the boundary region to a differential form calculation of the same Donaldson
invariants.

In this section we construct a de Rham-theoretic version of Donaldgenmap using
Chern—Weil theory. Recall that there is a canon8@i3)-bundleP — B* x N, and that the
u-map is defined by slant product with%pﬂ?). Using theL? metric one can produce a
natural connection o with curvatureF; see [4, Sections 5.1 and 5.2]. By the Chern—\Weil
formula one has

—%p1(73) = glztr(]-'/\ F) e 24B* x N), (5.1)
where the trace comes from the two-dimensional representatien @f = su(2). Let us
write tangent vectors t* x N as pairs(e, X) with « € TB* andX € TN, and iden-
tify 74B* with ker((d4)*) c 21(AdP). Further, fora, 8 € 2Y(AdP), define{wa, B} =

—Zfzo[a,», Bi] € 229(AdP), where the localhd P-valued functionsy;, g; are the com-
ponents of«, g relative to a local orthonormal basis @fN. If A is irreducible, then
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F(x,0), (8,0) = —2G6‘{a, B}, WhereGé‘ is the inverse of the covariant Laplacian on
29(Ad P), and hence

1
nd(@)(a, B, v, p)la =/ <L(p,0)l(y,0)t(ﬂ,0)l(a,O)Qtr(}-/\-7:)> )
N

1
= ;waGé{a, BYGoly. p} + Gole, v)Gh{p. B
+Gg o, p)GE B v Do. (5.2)

For our application it is crucial to get the combinatoric factors in (5.2) correct.

If we replacew by §,, a delta-form supported at a poipt the resulting form ori3*
is still de Rham cohomologous to a form obtained using smaotHenceforth we write
ud(p) := nd(8p). For anyp € N, a 4-form representingq(p) is given by

1
1d(8p) (e, B, v, p) = ;tr(Gé{a, BIGE Y, p)
+G4{a, y)GE o, BY + Gila, p}GEB, v)) g (5.3)

To make use of (5.3) we need some concrete formulas — with calculable leading terms and
small remainders — foﬁg{a, B}. We can obtain such formulas whéris a concentrated
instanton with a “charge-one bubble” and 8 come from infinitesimal changes in the
bubble parameters (center, scale, and gluing angle). Tangent vectors of this type span an
“approximate tangent space” on which very strong estimates are possible. This space, its
relation to the action of the quaternionic affine groupRsh and its relation to the gluing
construction in [4] are central to the proof of Theorem 1.2. In the next section, we define
the approximate tangent space precisely and study these relations in detail.

6. Group actions and the approximate tangent space

Let H denote the quaternions aitl the nonzero quaternions. The eight-dimensional
approximate tangent space we define later is obtained by an “almost-actidri”>oH =
R4 x SU2) x R*on B induced by an almost-action ¢h(what “almost-action” means is
explained below). Essentially, we lift froM to P cut-off versions of translations, dilations,
and “self-dual rotations” in a gauge-invariant way.

To make this more precise, |[¥tbe a vector field oM, andA a connection of. The
pair (X, A) defines a flow of® obtained by liftingX A-horizontally toP. We thereby obtain
from X the “canonical flow ofX on A" with associated vector field > X 1= (xFy €
QRYAdP) = T4 A (see [8, Proposition 4.3]). The canonical flow is invariant under the
gauge group, hence it descend$stdMoreover, any two lifts td® of a diffeomorphism of
N differ by a gauge transformation, and hence given an actidd by any connected Lie
groupG on N, the canonical flow integrates to a well-defined actioain 3, though in
general not ord. Of interest to us later will be the comparison of the canonical lift to that
obtained by liftingX horizontally with respect to a reference connectian In that case
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the difference between the two tangent vectorgjtd induced by the two flows ig4u,
whereu = 1x (A — Ap).

Now let G be a Lie group acting from the left dd. Suppose that for eache G, the
action®, of g on N lifts to a bundle mapb, : P — P; if G is connected, we can obtain
such lifts by using the canonical flow. (We do not require the lifts to piece together to a
G-action.) For later purposes we will need to calculate the differential of the induced action
of GonB atanyg € G. This is not difficult, but it is easy to confuse the rolegy@indg—*
in this calculation, and this mistake would be fatal for our application.

For each connectiod € A, let®4 € 21(P, su(2)) denote the connection form &f
Givena Iiftég as above, defing- A to be the connection with connection fo(ﬁqg—l)*(aA. If
the lifts piece together into an action®DnP (necessarily aleft action), thép, A) — g-A
defines a left action dB on A. ®,,,, and®,, o ®,, are gauge-equivalent, since both are
lifts of ®,,,,, SO an element-wise liftablé-action onN alwaysinduces &G-action ons3,
whether or not it induces one ¢h

Now fix [Ag] € B and defing : G — B by p(g) = [g - Ag]. This is well defined and
is independent of the choice of lifts. On a small enough neighborhboiany g € G, we
can always choose the;, to vary smoothly witth, so that orlJ the mapp factors through
a smooth map : G — A defined byp(g) = g - Ao. Letv = (d/dt)g;|—0 € T,G and
write v = Rg, w, wherew € T,G = g. Then

d
prgv = o ((EXPtw)g) - Ao) (6.1)

t=0

But &)exth) g=v@®o &)exp(tw) od ¢ for some gauge transformatigrit) varying smoothly
int, and hencéexp(tw)g) - Ag = ((exptw)) - g - Ag) - ¥ (¢)). Thus

mod Im(dg.4,)
t=0

d
prv = S (€XPtw) - g - Ao)

mod Im(dg. 4,). (6.2)
=0

Letw € I'(TN)andwp € I'(TP) be the vector fields od andP induced by the infinitesimal
action ofw. Then

d - -1 *
ar ((q)exm;w)) Wg.Ag)

= _Llfjpwg-Ao = =13 Fg.44 mod Im(dg.Ao) (6.3)

—d ((N_1 )" )
O] ) @g-A
dr - expwy) @g-Ao o

(if @ is defined by the canonical flow, then “mod(. 4,)” can be erased in this line).
Note thatv directly defines a vector field dd by ﬁ|¢g(x) = (d/dt) (g, (x))];=0. Since we
can takeg, = exp(tw)g, it immediately follows thab|e, ) = Wle,x) forallx € N, so
the vector field$ andw are the same. Hence

Px, U = —Lf)Fg.AO mod Im(dg.Ao). (6.4)
Thus if we identifyTj 418 with ker((d*)*) C £21(Ad P), then

ﬁ*gX = —JTALXFg.AO, (6.5)
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wherer, : RL(AdP) — ker((d?)*) is theL2-orthogonal projection. (Here and below, for
notational convenience we do not distinguish between a tangent vedfoofta1 at [A],
literally a gauge-invariant section of a certain vector bundle over the gauge-orbit through
A, and the representative of this sectiod\gt

We would like to apply these ideas to the situation of a local actioHdf& H on a
neighborhood of a point iN. Given a concentrated connectidnwith scaler. = A(A) and
center poinipy, fix a positively oriented normal coordinate system centerggyat Near
pa4 it makes sense to speak of the translation, dilation, and rotation vector fields. These are
determined invariantly by da@, a, ) € T,,M ®R & A2(TN) by setting

N .0 .0 .0
—pl -1 o
Xw,a0) =b ax + (‘/E)L ) (axl ox + ajjx _8x1> ) (6.6)

where{x'} are normal coordinates centereghatandb/, oy are the associated components
of b, . We include the normalization factox/21)~* to arrange: ; F4|l2 ~ const (inde-
pendent of); see Proposition 6.4. We Calljxi(a/axj) a self-dual/anti-self-dual rotation
vector field ifejj dx’ A dx/ is an SD/ASD 2-form ap .

SinceX are only defined locally, we extend themNdy cutting them off outside a small
ball. For this purpose witlX as above, we defin& = X, whereg is a cut-off of scale

€ = dnorY2, (6.7)

Hereng is a constant taken large enough to ensureglean be used in the gluing construc-
tions of Donaldson and Kronheimer [4], but for all of our other applications we can ignore
no. For convenience we tal® = Bsid(r4/€), Wherer, is the distance tp4 andBstq is a
cut-off function with support in [02], identically 1 on [Q1]. (These cut-offs, which will
be used for the rest of this paper, are different from the ones in Section 3.)

We define

ha = {Xbao =BXbaw € TTN)|(b,a,a) € T,,M ®R® A2 (TN)}.  (6.8)

Itis worthwhile to observe that the definition of (A)SD rotation vector fields is necessarily
a local definition, since globally a nontrivial exact 2-form cannot be SD or ASD on an
orientable compact manifold. In fact a#f, rotations that are SD at one pole are ASD at
the other. This is most easily seen by using stereographic projection to id&htify{oo}
with R, then withH. Left-multiplication by unit quaternions induces SD rotations near 0,
while right-multiplication induces ASD rotations near 0. But coordinates sean S* are
related to those near 0 by quaternionic inversion (the orientation-preserving map 1),
which interchanges the roles of left- and right-multiplication.

WhenA is an ASD, we make the following definition.

3 The precise definitions afandp 4 are notimportant here. There are several definitions in the literature leading
to some arbitrariness in the definition of “near”, “bubble”, etc. In all instances in which the differences among
these definitions have been carefully analyzed, it has been found that these differences do not affect the estimates
we need in any material way (cf. [9, Section 5]). We will simply assume in this paper that the same is true here, and
will freely quote results proved using different definitions as if they had been proved using consistent definitions
of scale and center.
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Definition 6.1. Theapproximate tangent spaéé, atAto the moduli space is the space
{)N(A = LxFA|X€f)A}. (69)

We usually write simplyX and leave thé\-dependence implicit.

To justify this terminology, we consider the action induced by skidn an ASD con-
nection. Since th&'s are nearly conformal vector fields, one expects the induced flow to
map an ASD connection to a nearly ASD connection. Proposition 6.4 shows that this is the
case, and more — but first we need a definition and a lemma.

Definition 6.2. Givenx, v, Ao > 0,letM;y; , - C M, ; denote the subsetofinstantons

[A] obeying the conditions

1. the first eigenvalues of the Laplacig@ds')*d* on 0-formsd4 (d4)* on SD 2-forms are
both greater than, and

2. forallp € N,

CA2
+ra(p??+«’

whereF, is the curvature o, r4 (p) = dist(pa, p), andx andp, are the scale and center
point of A, respectively.

(6.10)

Fa(p)] < 5

The pointwise bound (6.10) essentially says {l#ag| is bounded by the curvature of a
standard instanton plus a contributioffrom a background connection. At small distances
from p4, the latter term is negligible, but far fropy, the background term dominates.

When dealing with estimates for the approximate tangent space, one must decide at what
scalee to cut off the vector fields ify 4. If one takes to be too small, the derivatives of the
cut-off function become inconveniently large, while if one takeés be too large, the con-
tribution from the background connection swamps the contribution from the concentrated
curvature. If we require that scale as a power of, we get the optimal balance between
these undesirable features only i A1/2. Earlier we chose = 4noAY/2, and we now take
no to be large enough so that in the gluing construction of Donaldson and Kronheimer [4]
one is assured of landing in the domain of Taubes’ contracting mapping argumentgnce
has been so chosen, it (lik¢ is simply another ignorable constant for the computations we
need in this section. In particular, note that on the BaJh4, ¢) or radiuse centered ap4,
we haver?/(22+r2)2 > (Lo +64n3)~2 > const k. Hence, with a new constant= c(x),

|Fal < cx?/(A® +r%)? onsuppp). (6.11)

This enormously simplifies our computations.
The next lemma shows that we can always arrange theZibelie in someM

K,V
k+1,A0"

Lemma 6.3. Given smallrg, let T : M;<+1,xo — M be the projection sending a con-
centrated connection to a “background” connection. l[dl] € M; and assume that
the first eigenvalues of the Laplacia d,. d;{o(d;{o)* on AdP-valuedO-forms and SD
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2-forms, respectively, are positive. Then there exists- 0,v > 0,« > 0,C > 0,and a
neighborhood/ of [Ag] in M1 such thatr ~1U/) c PICT

Proof. That condition 1 in the definition o84}, ; ~can be satisfied follows from the proof
of Lemma 7.1.24 in [4]; that condition 2 can be satisfied follows from modifying several

ideas in [9, Definition 4.1, Lemma 4.3d, and Proposition 4.4]. O

Henceforth we will always assume that instantoa$ lje in a fixed M*". For such
connections we have the following.

Proposition 6.4. Fix k, v. Letr, : 2Y(AdP) — H} = ker((d*)*) Nker(d?) (naturally
identified with the tangent spag M) be theL ?-orthogonal projection. For all sufficiently
small, positives, there exist ce1 (1) such that ifA e M%), . , then

k41,10’
11X b.a.e 15 — 872(IbI2 + |al? + D) < ex(W) (b + |al® + [a]?), (6.12)
wheree1 (L) — 0asi — 0,and
IX — waXll2 < cA’(Iblx + (al + [a)AY?). (6.13)

Proof. The proof of the first statement is similar to that of Ref. [8, Proposition 3.6]; we
omit the details. We prove the second statement later as Proposition 10.8(b). O

Thus by takingh small enough, we can ensure that : Hq — Hf} is injective. Let
Oo C h4 be an open neighborhood of zero. POk h 4, let AX denote the connection that
results from acting oi by the canonical flow oK for unit time, and letD4, = {AX | X €
Oo}. Proposition 6.4 has two implications once we ta@kgsmall enough. First) 4 lies in
a neighborhood of the ASD connections on which Taubes’ contracting-mapping argument
lets us “project” the image oA to an ASD connection. Second, by the implicit function
theorem, the image a4 in M1 is an eight-dimensional submanifold f; 1.

The quantityf( — 4 X will be central to the definition of the remainder termsuipge(p)
and to the analysis in Section 10. We define

Ex = X —maX =d*G§@** X + (@)*GLatx. (6.14)

HereGj andG/ are the inverses of the Laplacia@")*d4 andd” (d4)* on 2°(Ad P)
and 22 (Ad P), respectively.

We make three observations here. Firshi§ ASD, || (d£)*G4d4 X ||2/[ X ||z is small for
anyrotation vector field, not just SD ones. This is to be expected since any rotation vector
field is an approximate isometry and hence should approximately preserve anti-self-duality.
However, |[d4 G4 (d*)*X|12/11X |l2 is small only for the rotation vector fields of duality
opposite to that of the connection. Second, to deduce from this smallness that the parameter
space injects (locally) int#8, one must know that the first eigenvalue of the Laplacians on
0-forms does not tend to zero asends to zero as it will if the “background” connection is
flat (or merely reducible). Indeed okt1(5%), all rotation vector fields (not cut off), lifted
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as above, preserve the standard instanton. ¥QiiR*), if one writes instantons in the usual
gauge and instead lifts rotations using the flat connection, then ASD rotations preserve the
standard ASD instantons centered at the origin, while SD vector fields induce the effect of a
gauge transformation.) Third, because of the cuiBolf, is not a Lie subalgebra d@f (TN),
although in some sense it is close to being one. Thus, while intuitiyely associated with
the Lie algebra of an eight-dimensional group of translations, dilations, and rotafigris,
not quite the orbit of an eight-dimensional local Lie group, hence the term “almost-action”.

We will return to this point at the end of this section, but first we wish to relbteo the
gluing construction in [4]. The fibration of a region.v(; , ,  overM, is usually viewed
in terms of center point, scale, and gluing parameter. We claim that on an infinitesimal
level, these are essentially the eight parameters used to define the approximate tangent
space. Indeed [9] [Section 5] it was shown that lifts using the translation and dilation
vector fields do correspond to infinitesimal changes in center point and scale up to an error
that is essentially Q.). (Ref. [9] dealt only withAM 4, but under a suitable definition of
“concentrated”, the same argument works more generally.) It remains to identify our action
of SQ(3) (the SD rotations) with the “gluing parameters” of the construction in [4, Section
7.2]. As both constructions are noncanonical we content ourselves with a somewhat heuristic
correspondence.

Instantons in the subspaﬂ&ifuo have a single “charge-one bubble” and are otherwise
not concentrated. For any such ASD reference connedtjor A, there exists a gauge over
the ballB(p4, K 1) such that after pulling back t8(0, K ») ¢ R* by a positively oriented
normal coordinate systefn’}, the connection form is close mjtd, the standard instanton
on R* of scalex and center the origin (see [4, Section 8.2.1]). HEre- 1 is any fixed
number and “close” means that after dilating hythe two connections ar€?-close on
B(0, K) C R* the undilated connections satigy/ (A — AS'%| < 1217/, 0< j < 2,
where by taking.g small enough we can take as small as we please. After a choice of
normal coordinate system, the identificatid@h = H, and an identification oBU(2) with
the unit quaternions, the connection form 61 on our ball is

_ Im(@Edx)

= . 6.15
A2+ |x|? (6.15)

on)
For integersj = 1,..., 10, define the set§; = B(pa, jnort/?) andV; = N — U;.
Also let Uy, denote the annulu§1g N V1 and lets2 denote the smaller annuldg N Vo.
We choose gauges, s« (local sections oP) over Uy, U, respectively, such that the
transition function betweeliigandlUq iS goco (x) := X/|x| (i.€.500 = 50200c0); fUrthermore
we takesg to be the radial gauge fé with respect tgp 4 with which (6.15) is written. The
connection form forAitd with respect to,, 0n Uy is then
A2 1m(x dx)
_ ] 6.16
RN EVERNTE (6.19)
To make contact with the construction in [4], we will pretend that on the Ggllour
connectiom is exactly standard (so that the connection form relativg tm Usg is (6.15)).
Let B be a function that is identically 1 oN — U, and identically 0 ors2 with |[VB| <
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cngl)fl/z. (Note that the “interior” part of the support @f occurs wherg8 = 1.) On
Uso, let o/, denote the connection forp’. We then define a new connectidghon P by
declaring the connection form fot’ in the gauge,, over Uy, to bew.,,, and declaring
A’ = AonN — Uy. We think of A’|y, as a cut-off “background connection”. In fact, we
can define a bundI®; of Pontryagin index by replacing the transition functiogp., by
the identity; A’ |y, extends to a connection df that is flat neap 4. Note that over? the
connectiord’ is flat; its connection form there, relativestq is gooo dg&i; = Im@x dx)/|x|2.
Our choice of normal coordinates and identificatiefh = H induces a Lie algebra
isomorphisn® : A2T* M — su(2) = Im(H), mapping the standard basis 4f 7R*
to {i,], k}. (Alternatively, #~1 is given by mapping € su(2) first to the vector field
induced by quaternionic left-multiplication dth, then to the 2-form obtained by lowering
an index using the metric.) Let= 0(«) and assumé| is not too large. We consider the
canonical flow ofX = ,Baijxi (3/dx7) acting on the cut-off connectiofy . After integrating
the flow for time 1, the action on the basexis— ¢(x) = h1(r)x, wherer = |x| and
h1(r) = exp(Bv). Let A}, be the connection determined by this integrated canonical flow.
An alternative flow, the $p-flat” flow, is obtained by liftingX to P|y, using the flat
connection determined hyy, and extending this flow to the complement @§ by the
identity (sinceXis supported irU/g). If we integrate theg-flat flow for time 1, the resulting
connection form o2 with respect toyg is

o _ Mm@ mx dtha(r)x)

@ Ix|2 = g0oohy t dh1go s + 800 Ugom- (6.17)

By our earlier comments, the connections resulting from the canonical flow angHtla¢
flow are gauge equivalent (and in fact are equal outsigle Thus A/ is gauge-equivalent
to a connectiom!] equalingA’ on N — U, and whose connection form i@ (in the gauge
s0) is (6.17).

We claim that the connectioft] is the one constructed in [4, p. 296]. The latter essentially
begins with the connectiod’ (thought of as a cut-off connection aPx|y, glued to a
connection on & = 1-bundleP1|y,,) and modifies it o/, as follows. Lethy(r) be
as above, leto(r) = exp(—(1 — B)v) and consider the two gauge transformatiéns
ho over Us given by i (seo(x)) = se0(x)h;i(r). The gauge transformatidly does not
extend to all ofP (unless exp = +1), but it does extend to the bundi defined earlier,
and forr < 4nor1/2 changes the trivialization,, (extended taP;) by the constant exp.
Similarly the gauge transformatidr extends taP|y,,, changing the trivialization,, for
r > 8norl/2 by exp(—v). Becauseh[l dh1 = hgl dhy, the two gauge transformations
have the same effect on the flat connectidfy, . Therefore we can define a new connection
AP by

oK _ | 240 onUe,

. 6.18
v h1(A") onVs. (618)

The connection form foAl‘?K with respect tx,, on 2 is hIl dhy = hgl dh2, so with
respect tasp the connection form is precisely (6.17). Tha§ and AEK coincide ons2.
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Sincei; = 1 on Vg we haveAUDK = A’ on this region, and sinc¥ = 0 on Vg we have
Al = A’ there as well. Thud! = APK on V5. It remains to consider onl/,. On this ball,
a computation shows that the connection formAorelative tosg is
Im(x dx ~ e

wy = % (1— ﬂ(r)m) . (6.19)
On Uy, we havehs = 1, so the connection form fvaK remainswy. But the connection’
is also preserved by theg-flat” flow of X; replacingx by 41 (r)x in (6.19) does not change
wo, Sincehy is constant or/,. Therefored” = APK over all of N,

Now let A, be the connection obtained from applying the canonical flow fdr time
1 to A (rather than tod’). The preceding shows that up to gauge equivalence, Wwhes
not too large, the only differences betwegp and APK arise from the facts that (i is
only approximately standard on a small b&ilp 4, K 1) rather than exactly standard on the
larger ballB(p 4, 10n0A1/2), and (ii) we do not cut offd,, before applying the flow.

It should also be noted that since the subspgfecorresponding to the SD rotation
vector fields is not closed under Lie bracket, if we§&f act onA by the canonical flow
for time 1, we should not expect to get a closed “orbit”. But the construction in [4] shows
that the space of gluing parameters is a cop8o(3).

To address this discrepancy, first note thalifvere R* we could dispense with the
cut-offs in the definition of 4. The vector fields would be globally defined, and would
generate a Lie algebra exponentiating to the group of motioR¢ of

{x > ax+b|(a, b) € H* x H}. (6.20)

The stabilizer of the origin would kg* x {0}, and if the initial connectioA were standard,

the set of connections generated by lett#idg2) c H* act via the canonical flow would

give two copies of the space obtained by the construction in [4},&8® and(—a, 0) yield

the same connection. (Alternatively,ifz£ 0 is small enough, the connectioa$ = APK

andA” = APX are gauge-inequivalent, because the gauge transforntatitefined earlier

— which always extends t8|y_{,,} — extends td? if and only if expv = +1.) From our

earlier discussion the action @f, b) on the standard instanton is given by pulling back the

connection form by thiverseof (a, b), which results in a connection of scad¢ and center

b (cf. (8.23)). The unit quaterniom/|a| corresponds to gluing angle doubly parametrized.
Intuitively then, we have the following picture. Fix a reference connectioe Ag <
ki1 LEUB C su(2) be the ball centered at the origin that is carried diffeomorphically

to SU(2) — {—1} by the exponential map, and 18 C bft be the corresponding set of

SD rotation vector fields. If we let the canonical flow of element&iract for time 1 on

[Ao], we obtain a space that (for purposes of integrating reasonably behaved differential

forms) approximates two copies of the fibésk . This correspondence becomes sharper

asig — 0: as we take the limit and rescale the (local) metric and normal coordinates

correspondingly, the failure &f4 to close under Lie bracket disappears on any ball of fixed

rescaled size. Furthermore, because the rescaled metric becomes flat, the limiting space of

vector fields) 4 is the same whether we center the rotations and dilatiopg at atp. Thus

the limiting action ofH* x H above appears to generate an immersed manifold that we can
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treat “homologically” as two copies dfpk . This discussion motivates the assumptions we
make onZ in the next section.

7. The fiber Z

For our purpose we need only consider one fibet Z,, of the projection/\/t}ﬁLl’)\0 —

1> we do not need to construct the whole fibration. We will assume’thas the following
five properties. The first three are known to be satisfiedky, so the key assumptions are
really the last two, which require the tangent space2& ahd Zpk to be close in various
norms. The assumptions can almost certainly be weakened from those below at the cost of
considerably more technical work.

(Z1) Z fibers ovem via the projectionZz — N sending a concentrated connection to its
center. GiverlJ C N we letZ|y denote the inverse image ofunder the projection. We
assume thdll can be covered by a finite number of normal coordinate cliarfe/hich we
may take to be geodesic balls) such that for eaittere is a two-to-one fiber-preserving
covering mapp; : Hi, x Ui = Zly, having additional properties listed below. Here
Hj{o = {a € H* | |a| < Ao} = (0, Ag) x SU(2), where the isomorphismis— (|a|, a/|al).
(Note that the center point and scale maps are defined globatlyitaa only for the purpose
of handling gluing parameters that we need to choplyp

In general a normal coordinate systémi} on U; determines an identification between
U; and a ball inH centered at the origin, and hence a local actiorH;)g x H on U;
given by ((a, b), x) — ax-+ b. We assume that on eaéh there is a positively oriented
normal coordinate systefn/} on U; such thatp; is approximately given by the induced
canonical flow of thidH} = x H-action, based at the standard instantorRdnin the sense
that (Z2)—(25) below are true. From [1, Section 3], the orientation induced on theZfiber
by the standard orientation bf x H as a complex vector space is then compatible with the
standard orientations o¥1;,1 and M (i.e. the orientation of\/l;ﬁ“o is the product of
the orientation oZ and the pullback of the orientation @f(;). These are the orientations
used in (1.8).

(Z22) We assume that for eatlihe scale and center pointa&f= p; (a, b) arer(A) = |a|
andp4 = b (in quaternionic normal coordinates), respectively.

(Z3) Giveni, let[A, »] = p;(a, b) and letF, , = Fa,,. We assume that for any > O,
on the ballB(pa, KA(A)) we have

2
V48a| < e (MA72, (7.1)

F —
Farl = a2+ b2 | =

wheree1(A) — 0 asi — 0.
(Z4) Let B be the component of exp(SU(2) — {—1}) containing 0. A tangent vector
vE T(a,b)(HjO x B) gives rise to a vector field on a neighborhoodaf B that determines

an elemeni, € h4. Writing X, = 1x, F4, we require that

15,0+ Xyl 2 < e2(M)|v], (7.2)
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whereez(A) — 0 ash — 0. Observe that because of (6.12), we can alternatively write
(7.2) asjp,v = (=maXo)ll 2 < €2()Ivl; cf. (6.5).

(Z5) Lettingé, = p,v + X, and§, = X, — 74X, we further require that, satisfy the
same weighted.# bounds ag, given in Proposition 9.1 (Egs. (10.74) and (10.75)), and the
pointwise bound (10.72).

If not for (Z4) and (Z5), we would not need to assume (Z1)—(Z3). By itself, (Z1) follows
from the description of the ends of moduli space in [4, Sections 7.2 and 8.2]; we simply
take the local diffeomorphisnD, Ag) x SQ3) x U; = Z|y,, and pre-compose with the
covering maSuU(2) — SQ(3). Similarly, (Z2) and (Z3) follow from [4, Section 8.2.1].

What is not clear is whether the construction in [4] yields a fiber whose tangent space at
[A] is sufficiently close tar 4 (H 4) in the norms required for our analysis. If the subspace
ha C I'(TN) were a Lie subalgebra, then by (6.5) the canonical flow would generate a fiber
whose tangent space df][would be preciselyr 4 (H 4). However} 4 is not closed under Lie
bracket and the canonical flow of vector field$ i acting on a single reference connection
[Ao] has no chance of generating an orbit that reasonably approximathtes Zpk ; the
cut-off in the translation vector fields prevents the canonical flow from moving the center
pointvery far fromp 4., whereas all points iN can occur as center fpk . But the estimates
relevant to proving Theorem 1.2 are much less sensitive to changing the definition of of
translations than to changing the definition of rotations and dilations, so it seems plausible
that by a patching argument altering the definitions of only the translation vector fields in
any significant way, we can splice together canonical flows based at connections with nearby
center points. Presumably by splicing enough flows together we can obtain a fiber that is
C!-close globally taZpk andC*-close locally to the orbit of some canonical flow. Even if
the splicing construction fails, there are two reasons why, for purposes of integration, we
may not need to define a true fiber (suchZas) in a topological sense. First, when we
integratew(p) A u(g) over an orbit of the canonical flow, only connections with center
point neap andq contribute significantly to the integral. It is likely that the same holds for
an integral oveZpg, so that it suffices to approximate only a regionZpfc consisting of
connections with center point in a fixed small ball. Second, although the canonical flow of
the subspace[fg acting on JAg] does not generate@dosedmanifold, it does generate an
immersed copy 08U(2) — {—1} lying in a small neighborhood of &Q(3)-orbit in Zpk,
and which geometrically wraps twice around this orbit. A careful analysis may show that
there is a homotopy from the immersed punctusék?) to a punctured double cover of the
SQ3) in Zpk, small enough in all relevant norms that there is only a negligible difference
between integrating ovefpk and over the orbit of the canonical flow.

Thus the idea behind (Z1)—(Z5) is basically that there is fiber that interpolates between
Zpk and the not-quite-fiber generated by splicing together canonical flows. The hypotheses
(Z4) and (Z5) amount to assuming that in this interpolated fiber, the bounédsare as
good as they would be if the tangent space to the fiber were the one determined by the
canonical flow. We need such an assumption because when wegdphl A 1q(g) back to
Z, we need to insert true tangent vectortmto (5.3); therr4 X’s in the expansion (8.1)
below should be replaced kpy,v's — which has the effect of replacing eaghin (8.6)
with &7,
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There is other evidence making the simultaneous satisfaction of at least (Z1)-(Z4) very
plausible. OrR*, if we remove the cut-offs in the definition 6f, and defineZ from the
canonical flow acting on the standard instanton, then the sfijgesand# 4 coincide. In
the case of 1-instantons over simply connected definite manifolds (where the background
connection is flat and there are no gluing parameterg, isdive-dimensional), (Z4) was
shown in [9] to be true witk>(1) < cA1~% for smalls > 0; in [6] this was strengthened
to A1H9,

The technical hypothesis (Z5) is more ad hoc, and stronger than necessary, but is not
without basis. In the setting of the five-dimensional moduli spaces mentioned above, certain
estimates of this paper and Ref. [6] can be combined to shovxntgég’||4 <A
A4a-2Y2) and|rag’lla < b - A3(b - A 4+ a - M%), much stronger than the? bounds
assumed in (Z5). (Herg, denotes distance to an arbitrary point N.)

An important implication of (Z4) and (6.12) is the following. Ledzcaié2 be the volume
form onZinduced by the.? metric onB. (Hypothesis (Z1) determines an orientationzon
so there is no sign ambiguity here.) ket R* denote the quaternionic variablel-iijo. Then

ﬁf(dvoléz) ~ const x d*a A dvoly = const x A3dx A dvolgs A dvoly, (7.3)

where the approximation becomes exact as 0 (and the constant is of course nonzero).
Our chief use of (7.3) will be to help estimate the integrals of the nonlocal terms in
ud(p) A ug(q). For this purpose, we do not actually need'in (7.3); “ <" would suffice.
Thus hypothesis (Z4) can be weakened.

8. Localizing nd(p) A nd(q)

From now on we assume there is a filfewith properties (Z1)—(Z5). To motivate the
leading-term calculation in (1.10), suppose for the moment that4prd Z the tangent
spacelja) Z is precisely, rather than approximately, the spagét{ 1) C Tja;M. Then if
we pull uq(p) back toz, we need only apply (5.3) to arguments of the formX 4 with
X € h4. Recalling the definition ofx in (6.14), we then have

Gi{n X, 7Y} = G§({X, Y} + Rem(X, Y; A)), (8.1)
where
Rem(X,Y) = {X, &} — {¥,&x} + {€x. &v ). (8.2)

(We omit writing most of theA-dependence in these formulas explicitly.) Hére} is a
universal, local, anti-symmetric bilinear pairing that takes #bP-valued 1-forms and
produces ar\d P-valued O-form. Note thaRem (X, Y) is anti-symmetric irX and.

In [[5], Proposition 2.1], it was shown how to expand several of the expressions appear-
ing in (8.1) and (8.2) as a leading-order local term plus a nonlocal remainder smaller in
appropriate norms. In particular, for any vector fiedjsr on N, we have

G{{X, Y} =—-3F(X,Y) + G§(R"(X, Y)), (8.3)
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whereF = F4 and where

2R"(X,Y) = R(F)(X,Y) + F(AX,Y) + F(X, AY) — 2(VAF)(V; X, Y)
—2(VAF)(X, V;Y) — 2F(V; X, V;Y). (8.4)
HereR is an endomorphism proportional to the Riemann tensor whose precise form does
not concern us. As a consequence of (8B)(X, Y) is anti-symmetric inX andY. The
precise way in which the derivativesBfand the derivatives of andY are hooked together

in (8.4) is critical for certain estimates (Lemma 10.4).
Applying (8.3) to the first term in (8.1), we find

G{{mX,n¥} = —3(F(X,Y) — Rem(X, Y)), (8.5)
where

$Rem(X,Y) = G§(R"(X,Y) + Rem(X, Y))

=GR (X,Y) +{X, &y} — (¥, &x) + {£x, &v))
‘= G§ (Rem(X, Y)). (8.6)

Inserting all this into (5.3) we find
ud(p)@ X, 7Y, 7V, 7W) = 4—12tr((F(X, Y)F(V,W)+ F(X, V)F(W,Y)
JT

+Rem(X, Y, V, W)|,, (8.7)

where
Remy = const x tr(F A Rem), Rem = const x tr(Rem A Rem). (8.8)

(In (8.8) we regard- andRem asI"(Ad P)-valued 2-forms on the space of vector fields.)
The first termin (8.7) is just8?) 1 tr(F A F)(X, Y, V, W)|,, which, sinceF is an ASD,
can be rewritten ag872)~1|F|2dvol(X, Y, V, W)|,. Thus if we define

~ ~ - ~ 1
tioc(p) (@ X, n ¥, 7V, 7 W) = W|F(p)|2dvol<x, Y, V, W)l,, (8.9)
then (8.7) simplifies to

na(p)@ X, 7Y, 7V, 7W) = pioc(p)( X, 7Y, 7V, 7 W) + Remy(X, Y, V, W)|,
+Rem(X, Y, V, W)|,. (8.10)

Of greatest concern to us will be the local paigc(p) of this expression. Note that
oc(P) A tioc(p) = 0 since dol, A dvol, = 0. However, we will see that lign, , [, iti0c
(p) A mioc(g) # 0. In this integral it turns out that instantons of scalélist(p, ¢) give the
main contribution to the integral. Thus the pullbackf(p) A uq(p) to Z can be thought
of loosely as &-form concentrated on instantons of scale zero.
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To integrateuq(p) A g(g) we must still worry about the nonlocal remainder teiResm
as well as the fact that the tangent sp#iggZ is not preciselyr4 H 4. We will see later that
asig — 0, the contributions to the integral ply(p) A nd(q) overZ = Z,, from both of
these corrections tend to zero. What we wish to compute now is

lim Mioc(P) A oc(q), (8.11)
1=r)z;,
wherep andig are fixed.

For givenp, g, as we integrateoc(p) A wioc(g) overZ, the center poinp, of [A]in Z
moves around, affecting the support of the vector fi&ld§ v, w in (8.9). Thus fofu e (p) A
wioc(q) (X1, ..., mXg) to be nonzerop, must lie inB(p, 8norY2) N B(q, 8nort?). In
particular we can restrigi4 to a small normal-coordinate ball centered ap (which we
can take to be one of the; in (Z1)) without affectingfzmoc(p) A Wioc(q). Since we are
interested in the limit ag — p, we may also assumge U.

Let 2L = dist(p, g); we will later sendL to zero. DefineZ; c Z to be the set of
instantons irZ obeying the two criteria

01> 125 (8.12)
pa € B(p,no)'?). (8.13)

Note that if [A] € Z1 thenpy € B(q, (no + 1)21/2), so that the cut-off in the definition
of the vector fieldsX; equals 1 at botip andg. We will see later that the contribution to
(8.11) from the complement &1 is negligible.

Let {xéld} denote normal coordinates &h We change coordinates by settingy =
L~ 1xoq and replace the metrigoig on U by gnew = L~?goig. Because of the conformal
invariance of| F|2 dvol, wioc(p) A rioc(q) is unaffected by this change. However, since
A = Aold represented a distance in the old coordinate system, we now have a rescaled upper
cut-off for Anew = L Aoig ONZ, namelyio new = Ao/L. Measuring all distances in the
new metric, the defining conditions f@n, become

L8> o> L. (8.14)
pa € B(p, NLY2312). (8.15)

As L — 0, several things happen. Fére Z, | F4| becomes approximately standard on any
fixed ball B(p, K); gnew approaches the flat metrE(dx;',eW)z; and (in the rescaled metric
and coordinatesyY; becomes aisQ(3)-bundle over monotonically increasing regions of
center-scale space that exha(@stoo) x (R* — {0}) asL — 0. Because of (Z1), we can
identify Z; with ever-increasing subse, of G := (H* x H)/Z,. Letting u, . denote
the pullback ofuioc to H* x H, we therefore have

1
lim = —lim f f 8.16
LI_>O/21M|OC([7) A tloc(q) 2LI—>0/GLMIOC(p) A Wioe(q), ( )

provided this integral converges.
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Let p be as in (Z1)—(Z5). Write elements Gfas pairda, b), and writeA , ) = p(a, b),
Fiap) = Fa, asin (Z3). If we defingj,. = p*pioc € 2*4(G), then

/ / _ / / d 0 d 1
GLMk)c(p) A /’Lloc(q) - GL/’L|oc(p) A /L|oc(q) ﬁs R W a

A Ada® Adb A A db? (8.17)

To compute this we need to KNgW(,.») (3/3a’), px(a.p) (3/3b"). At each(a, b) defineX;
andY; to be the vector fields oR* induced byd/da’ andd/db’, respectively. Temporarily
writing ' = a't* andY; = X4, from (Z4) there is an & 8 matrixC = Id 4+ O(e2(Aoiq))
for which we have

_ ;0
P p) Cijw = T AGR X Fa,p)- (8.18)
Hence from (8.10), if not for the correction mat@ we would have
d 9 oA 5 A
Hioc(P) (ﬁ, e W) = toc(P) (T A X1 5 -+ s TA@ XT)

= (87%)2|Fa(p)|?dvol (X1, ..., X4) (8.19)

with a similar formula if we replace any of thg'da’’s by ad/ab' .

Let us ignore, for now, (i) the @2(Xoig)) = O(e2(LAnew)) difference between the
matrix C and the identity, and (ii) the @xo1d|?) = O(LZ|xnew?) difference between the
true metric on the rescaled ball and the flat metric; we will make the corrections later.
Since the Euclidean volume form isal = dx A - - - A dx#, we will write dvol, = dx,,
dvol, = d*x, below. Hence

, , o 9
MlOC(p)/\:u'k)c(q) m,...,w
= @) IFa(p)PIFa(@P d*xp A dhxg (X1, ..., Ya). (8.20)

So far we have treated*d, A d*x, as an 8-form whose arguments are vector fields,
but we may as well consider it as an 8-form on the eight-dimensional Spaded T, N.
Using the canonical isomorphisrﬂ§R4 =T, R4 = R* and our further identification of
R* with H, we can write eacl;, Y; in the form (v, w) € H @ H. In the coordinate
system{x/.,}, the origin represent, and we may assume thatlies on the real axis
with coordinate 2¢ H. Letty = 1 € H and Iet{r,»}‘z‘ be the quaterniong j, k. Then
Xi(x) = tia~Y(x — b) andY; (x) = 7;. So the corresponding eIementsnl;R4 T, R4 =~
HeoHareX, = (—ya b, ;a (2 — b)) and ¥/ = (z, ;). Modulo the span of
the Y/, we haveX, = (0,2r;a™t) := X/, so dx, A d¥xy (XY, ..., X}, Y], ..., Y} =

d*x, Adixg (XY, ..., X5, Y], ..., Y. Since dx, (X, %, %, %) = 0, it follows that dx, A
dhx, (XY, . X4, Y], .. YY) = dix, (Y, ..., Ypdix,(X],..., X}). But
d*x, (¥, ..., Y =1and dx, (X1, ..., X4) = 2%a|~*. Hence
, , d d
Mioc(P) A Hioc(@) ] (a,b) 3l bR

= (87%) 2| Fa.)(0) 1| Fla 1) (2)|22%|a| 4, (8.21)
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whereF|, ) isthe curvature of the instanton obtained from the actiqa of) on areference
connection in our fiber. Therefore

Lioc(P) A tioc@ @) = 24872 2| Fa.p)(0) 12| Flapy(2)12lal~* d%a A d*.  (8.22)

Becausé.g is small, there is a reference connection in our fiber that looks approximately
standard on a ball of any fixed large radius with the approximation getting beftgras0
(the rescaling by. only improves this approximation). Our next approximation is to ignore
the difference between the true reference connedipand the standard instanton; we will
deal with the error later. The connections in the limitifgare then the orbit of the standard
instantonA under the action ofs. Hence

L 2
da=1(x — b)) Ad(a1(x — b))

2 51 2 _
Fan ) =180 FaslP0 = | = S

48a|*
= . 8.23
(lal? +x — b|2)* (8.23)
Thus
Ip = lim / Mlloc(p) N Mfoc(q)
L—0, GL
2Ya|* d%a A d%
= 3674 , 8.24
a i (1a12 + 1b12)*(|al? + |2 — b2 ( )
and provided the error terms we have so far ignored are truly ignorable,
1
li ==1 2
LILnO/ZMOC(p) A toc(q) 5ip (8.25)

(see (8.16)).

Lemma8.1. [, = 1.

Proof. Firstintroduce spherical coordinatesaispace (with radial variable we cal) and
cylindrical coordinates it-space (with radial variablg. The integrals over the 3-sphere
in a-space and the 2-sphere in the imaginary subspabespéce are trivial, contributing
factors 2r? and 4r, respectively. Thus

1, =36z~%

3 00 OO OO )»7}’2
x - 81> 2 dz dr di.
/x:o/r:o/z:—oo W2+ 2+ 22202+ 12+ (2 — 224 ©
(8.26)

Introducing polar coordinates in ther quarter-plane, the angular integration reduces to an
integral over two real variables. Using the Residue Theorem to integrateleames us with
a one-dimensional integral that can be computed in closed form, yieldirg1. O

In the local calculation we ignored errors from four sources: (i) the contribution from
the complement of1; (ii) the difference between the flat metric and the true metric on the
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rescaled ball; (iii) the difference betwegpv and—m 4 X, (i.e. the difference between the
matrix C and the identity); and (iv) the difference betweét, , and the standard instanton
of scale|a| and centeb.

Let usfirstdeal with (i). Since the vector fieldlswe feed intquoc are cut-off at distances
> 2noAY2 from py, the integrandiioc(p) A wioc(q)(X1, . . ., Xg) vanishes fop 4 outside
the ball B(p, 2n0A2Y/2). For purposes of integration we therefore need only that portion of
Z lying over a ball of fixed small radius centeredmtBecause of (6.11), the integrand
over such a region is bounded by a constant times the integrand we used in our previous
calculation, cut off in certain regions. Since the integrand in (8.24) is integrable over all of
H* x H, given any exhaustioW; ¢ W, C --- of H x H, the integral over the complement
of W,, goes to zero as — oo. As the sets5; provide such an exhaustion, the integral of
Woc(P) A rioc(g) over the complement df1 tends to zero.

Next we turn to the errors (ii)—(iv) listed above. In place of the Betconsidered in
the derivation above, fok > 0 consider the setgx ; defined by{L%! > A1/?2 > L,
pa € B(p, K)\)}. After rescaling by as before these conditions becofigew > L, pa €
B(p, KAinew)}. This time asL — 0, Zg ; exhaustZk o := {pa € B(p, Kinew)} With
Xnew Unrestricted. But convergence of the integfalimplies that giverez > 0, we can
choosek large enough an small enough that the integral of the integrand in (8.24) over
the complement of 1, is less thars. On the interior seZk 1., hypotheses (Z3) and (Z4)
imply that givene4 > 0, by takingL sufficiently small we can arrange for the ratio of the
true iy, (p) A fipe(q) to be within a multiple(1 + €4)*1 of the integrand in (8.24) over all
of Zk 1. (Error (ii) gives an Qolq) < O(L%?) contribution toey; error (jii) a contribution
e2(hold) < €2(L%2) through the matrixC. As for error (iv), in the rescaled metric and
coordinates, (Z3) implies

/48a|? _
Fa.slgnon = (lal? + |x — b|?)? = 1000 hnci 8:27)

so that this error gives a contributien(rog) < €1(L%?) to €4.) Hence we can arrange for
the integral OffzK,Lﬂl/oc(P) A Ml/oc(q) to overlie Within%eg of the integral oveZg ; of
the integrand in (8.24). It follows that by choosibhgmall enough, the errors introduced
by our approximations can be made arbitrarily small.

We have now proven the following.

Proposition 8.2. Foranyp € N,

. 1
l / Hloc(P) A tioc(g) = . (8.28)
q— Zg 2

9. The nonlocal terms inpd(p) A d(q)

From (8.8)—(8.10)wq(p) A ud(g) can be expanded agoc(p) A iioc(q) plus aremainder.
Our next task is to show that, ag — 0, the contribution of this remainder y@ud(p) A
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ud(g) tends to zero. This will follow from the next proposition, whose proof occupies the
remainder of this paper.

Proposition 9.1. Let §2 be the restriction tdZ;, of 2a¢ = ud(p) A ud(q) — tioc(p) A
wioc(q) € $28(M). AssumingZ1)—(Z5),there exist$ > 0 such that

2 < const A, (9.1)
Z)‘O

where the constant is independent of p and q

Observe that Propositions 8.2 and 9.1 together prove Theorem 1.2.

Proving Proposition 9.1 requires some boundRem (X, Y) for X,Y € h4. Before
starting to derive these, we need some notational simplification. Below we will be computing
many things that are multilinear in data of the fotma, «) € T,,N ® R ® A2 T,,N.
Given a single vector fielX constructed from such data, we can denote the defining data
of (6.6) by(bx, ax, ax). This notation becomes cumbersome especially when computing
objects that involve more than a single vector field. However, bedalsg )| < c(|b| +
(|la|+ |2~ 1r4), thea andw data always enter our bounds with precisely the same weight,
so for shorthand we will generally lump theanda terms together, and simply call them
Furthermore, for simplicity we will often omit the subscripgfsY, ... in the defining data
(bx,ax,ax), (by,ay,ay),...; the dependence oK, Y, ... can be reconstructed from
the context. For example, if we write

|something bilinearitX, Y € ha| < c1b® + coba+ caa?, (9.2)
then on the RHS the notation has the following meaning:

b® = |bx|lbyl, ba= (Ibx[(lay| + ley]) + [by[(lax| + lax])),

a® = (lax| + lax(ay| + lay]). (93)

If the bilinear quantity is anti-symmetric i, Y (as in Proposition 9.2), then the estimate
factors through the wedge product, in which case we can take

b? =|bx Aby|,  ba= (lbx|(lay| + lay|) + [by|(lax| + lax]),
a? = (lax|lay| + lax|lay| + lax A ay|). (9.9)

Finally, the notatiornx < y meansx < cyfor a constant that is uniform in all relevant
parameters.
With this notation in mind, we have the following proposition.

Proposition 9.2. (a) There exist$ > 0 such that
IRem(X, V) lloo S A2 + ba- A™Y2 4 42 . 2712, (9.5)
Furthermore, there exists, > 0 such that, for, > ¢11Y/2, we have the pointwise decay

IRem(X, Y)| S rt(b? +ba- A7Y2 4 a2 17Y2), (9.6)
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(b) Letv, Xy, &, &, be as in hypothesi&5). If we alter the definition of Ren(X,, X.,)
by replacingg, with &,, then the bounds above still apply.

We will prove Proposition 9.2 (actually a slightly stronger version) in Section 10. Let us
assume it for now and move onto its application, the proof of Proposition 9.1. The decay
estimate (9.6) is crucial in this proof; the global bound (9.5) does not suffice.

Proof of Proposition 9.1. By hypothesis (Zl)fZ.Q < Y ipFR2.Sinces2 28(2) we

can write2 = fdeILz, where the functiorf can be computed atd] € Z from any
(positively) oriented.2-orthonormal basisy, . . ., ng of Tia Z by

F([AD =21, ....ng). 9.7)

Similarly, we definef’([A]) = 2a¢(n}, - . ., ng), Where the{n}} are an orthonormal basis
for taH 4, and set2’ = f’dvolé2 e 28(2).

We will first show thatfzsz/ < ckg (wheres is as in Proposition 9.2), and then deduce
that the same is true fqf, £2.

We proceed to estimafe’. By Proposition 6.4, an approximately orthonormal basisof
Ha, uptoascale factaBr?)V/2,is given by(n), = ma X b, .an.an) ‘= 7 Xn )5 a0y, an, @)
run over an orthonormal basis @f,,N ® R & AEL(T,,A N). Applying Gram—Schmidt to
{m X,}, it follows that f' < const x 2 (X1, ..., 7w Xg) dvoléz. Hence from (7.3),

pF(R') < e Xy, ..., nXg)23dA A dvolgs A dvoly. (9.8)

Symbolically we can write2’ = Zf’zofzi/ as a sum of terms of the for’ A Renﬁ‘i,

0 <i < 3. We estimate the integrals &f one case at a time. Only the completely nonlocal
term £2 requires the pointwise decay estimate (9.6); for the remaining terms the uniform
bound (9.5) suffices. Bounding 2 requires some care but we shall see that the integrals
of 221 and$2) can be estimated heavy-handedly.

Case 1: Terms of the form Rgnllet Z» C Z denote the subset of connections for which
both distp, p4) and distg, p4) are> c111/2, wherec; is as in Proposition 9.2, and let
Z1 =7 — Z. The setsZy, Z, are the inverse images of sé¥g, Wo C (0, Ag) x N under
the map sending a connection to its scale and center. If for 2aeh(0, 1o9) we define
Wi, = {y € N|(A,y) € Wi}, thenWy, is contained in the union of a ball of radius
< A2 centered ap and a similar ball centered g so VoW1 ;) < A2.

For the orthonormal sétb,, a,,, a,)} we may choose four elements of the ty(peO, 0)
and four of the typ€&O0, x, x), all normalized to unit length. Then from (9.6) @n, we have

IRem(X1, ..., X,)| S A~ . (coefficient ofp*a’ in (b2 4 bar"Y/2 + a20~1/%)%4)
< ATES, (9.9)

Hence from (9.8),
A0
/ pF24 < / A8 3 da dvoly < / (.3 pol(Wy ) da < AE; (9.10)
P H(Z1) Wi 0

the integral over the gluing-parameter sp&éegives a constant factor.



D. Groisser, L. Sadun/Journal of Geometry and Physics 36 (2000) 324-384 367

Similarly on Z2, [Rem (X1, . .., X,)| S A72ra(p)~2ra(q)~2; the two distances, (p),
ra(g) enter this way because in theng term in w(p) A u(g), two of theRem'’s are
evaluated ap and two af (see (8.10)). Sinces (p) 2ra(q) 2 < ra(p) *+ra(g)~*and
on W» bothr(p) andra(g) are> cA2, we have

Ao diam(N) A0
/ pF24 < / A3dxr / A4 3dr | < / Allogalda < A5
07 H(Z2) 0 eal/2 0

(9.11)

Combining this with the integral ovef; and summing over,

/96 <A (9.12)
z

Case 2: Terms of the fory A Rerrg. In this and the remaining caseB(X;, X;) is
computed either gb or atg, and since theX; are cut-off outside a ball of radius 11/2
centered apy, fori > 1 terms of the formF’ A Rerri" (X1, ..., Xg)|p,q4 vanish unless
(A, pa) liesin the setZ; defined in Case 1. All pointgy4 in the remaining computations
can thus be assumed to lie in one of our ﬁ;sandfpjl(z)p*glf = [,!.

Note that all vector fieldX, Y € h, satisfy|X|, |Y| < B(b + ar™%r4) < b+ ar~1/2,
and henceF (X, Y)| < |F|(b + ar~1?)2, Using the uniform bound (9.5) to estimate the
threeRem terms, we obtain the pointwise bound

|F ARem(X1, ..., Xg)| < |F| - {coefficient ofp*a*in
(b +ar~Y2)20 733 2  bar Y2 4 20 Y2)3) < | F AT, (9.13)

whereF is evaluated at eithgr or g. Because of the cut-off iiX; we may assume thaty
is a distance< cAY/? from whichever of these points at which we evaluate. Hence using
(6.11),

*o c)l/2 2 —5+35,2 *o
/915/ 23 da f S ridr 5[ APllogalda S ATTZ. (9.14)
z 0 o (Ae+r9 0

Case 3: Terms of the forii? A Rer@. Here there are two subcases, depending on where
the points at whiclF andRem are evaluated; we can have terms of tyfi@) F (p)Rem(g)
Rem(q) or of typeF (p) F (¢)Rem(p)Rem(q). In each subcase we bound Rem terms
using (9.5). At whichever poinf (X;, X ;) is evaluated, we can again assurmes A2,
sothat|X;| < b+ ax~2, Letting p’, p” denote either of, g, we then have

|F2 ARen3(X1, ..., Xg)| S |FI(p)IF|(p") - {coefficient ofp*a*in
(b+a)»71/2)4)\72+25(b2+bak71/2+a2)»71/2)2}
SAFPP) + IFP(p" )42, (9.15)
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Hence the integral of the different typesIb?Ren% terms can all be bounded by the integral
of |F|2(p))\,74+28:

ro eAl/? 5 —4+255 4 ro
/.Qég/ A3da / g dr f A Bllogaida <A (9.16)
z 0 o A+r9 0

Case 4: Terms of the fori® A Rem. In the previous two cases we were rather wasteful
in bounding| X;| pointwise; this time we must be more economical.

Sincep and q enter the problem symmetrically it suffices to deal with terms of the
form F(p) F(p) F(q)Rem(q). Temporarily writer,, = ra(p), ry = ra(q), Fp = |F|(p),
F, = |F|(q). Note that for our term to be nonzero, bethandr, must be< cA2. Using
this fact several times we find

|F3 ARem(X1,.... Xg)| S F2F, - 2.~ . {coefficient ofb*a%in (b + ar~r )
(b +ar"tr)?(b? + barn V2 + a2 7V2)) S AT (FIF S + F2F,r2)
A+ R 3D, 17

We can now replace by g and integrate over the regidii, p4) |0 < A < 20,0 <
ra(p) < cAt?} asin Cases 2 and 3. For each of the four tekmg'|/7* in parentheses in

(9.17), one find%’\l/z)f A2/ (X% 4+ r?)2)irkr3dr < const, so

A
/ 25 < / "33-4+0 gy <Al (9.18)
z 0

Combining the four cases, this proves tfiaf2’ < ckg (assuming Proposition 9.2).

Now defineReng“e(X, Y) to be the right-hand side of (8.6), but wih, &y replaced by
the objectsty, &}, of (Z5). The forms2 is obtained from2’ by replacing each occurrence
of Rem with Rengue. Hencef2 — 2’ can be expressed as a sum of terms of the form
Fi(Ren§“®— Rem)/Renj for appropriate, j, k. By part (b) of Proposition 9.2, the bounds
on |(Ren§“e(X, Y)—Rem(X, Y)| are of precisely the same form as in part (a), so the same
argument as above shows tlfgl(fz — ') < cAd, establishing (9.1). O

10. The proof of Proposition 9.2

The proof of Proposition 9.2 is long, so we outline the strategy. To obtain (9.5), we need a
pointwise bound on}g‘(Ren;(X, Y)) (see (8.6)). If there were a four-dimensional Sobolev
embeddingL% — (9, then modulo extra terms arising from Weitzenbéck identities that
occur when comparing objects of the forfv 4 V44|, to objects of the fornA4¢, we
could get ac® bound onRem (X, Y) from an L2 bound onRem(X, Y). (This, in turn,
would require somé.” and/or pointwise bounds @n)

Of course there is no embeddidg < C°, but since the failure is borderlineny
stronger Sobolev-type norm should give an embeddingGiStarhe most efficient Sobolev
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inequality for our purpose is the following one. This inequality is not surprising, but may
not be widely known, so we prove it in the appendix (Corollary A.2).

Lemma 10.1 (Sobolev embedding lemmal.et E be a vector bundle over a compact
four-dimensional manifold N. Fop € N, letr, denote the distance to. fhen for any

8 > 0,there exists a constant$) such that for all connectiong on E, all¢ € I'(E), and

all p e N,

lp(p)l < c@®oll2+ ||r,75VV¢I|2). (10.1)
Hence
[#lloo < c(8)sup(ligll2 + IIF;SVV¢>|I2). (10.2)
PEN

We will use this lemma to get pointwise bounds @n= GQ(Ren}(X, Y)). Hence we
will need to estimatd Gy w2 and||r,*VAVAGEwl2 for o = Rend(X, Y). For general
o, Proposition 10.2 estimates these in terms of weiglitedorms ofw, providing bounds
whose only dependence on the connection is explicitly through the center point and scale.
(This type of uniformity in the connection is the hard part of all our elliptic estimates.
Uniformity is important since to estimate an integral over a family of connections, we
cannot use any bounds that depend on the connection in an uncontrolled way.) Proposition
10.2 also provides similar estimates of objectsf the form appearing in (6.14), which we
need for reasons discussed below.

The pointwise estimates aiféw in terms of weighted.2 norms of generab will be
summarized (and generalized) as part of Proposition 10.2, specifically the first half of
(10.16). To apply these general estimateste- Ren (X, Y) we still need to bound the
weightedL? norms ofRem(X, ¥). To understand what this entails, wrikem (X, ¥) =

Ren},loc + Rerfﬁ,semiloc"*' Rer‘Q,nonloc' where

Ren@,loc = R//(X’ Y), Rer@,semiloc: {)2, SY} - {?v gX}a
Rerl;inonloc = {6x, §v} (10.3)

(see (8.4)). Because of the cut-offsXrandY, the expressionRen}’Ioc and Renlsemiloc
are supported iB(p4, 2¢), bUtRe”lnomoc is not. Thus among the estimates we need are
weightedZ? bounds onR” (X, Y). By Lemma 10.4 below, pointwise we find

IR"(X, V)| < c|X||IV|(B+ € 2x)(|F| + ralVAF]) (10.4)

(recall thatX is the object that the cut-off multiplies in the definition ofX). Here x is
the characteristic function of the annukis r4 < 2¢. Thus to apply the estimate (10.16)
of Proposition 10.2 to obtain bounds Q?’Q(Ren@(x, Y)), we need to estimate certain
expressions of the forﬂ’llﬂr;arffFllz, and similar expressions with replaced byVA F
and/or withg replaced byy . This will be accomplished in Lemma 10.5, where we will list
all the purely local estimates we need.
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WeightedZ2-norm bounds oRen’isem"OCandRen’inonloccan be obtained fromweighted

L*-norm bounds o andé. The first of these is another purely local estimate. The second
will be achieved in Proposition 10.8, where we will use the basic elliptic tools in Proposition
10.2 to turn the problem into a local estimate again.

Till now we have made no mention of the role the pgimpiays in affecting the weighted
norms. If we compute these weighted norms as above and take the supremuimeoess
in (10.2), we obtain only the sup-norm bound (9.5) Rem (X, Y). To prove Proposition
9.1 we additionally need the pointwise decay bound (9.6). Since the local quantities we
bound are supported near the center ppinbf A, decay is only an issue for the nonlocal
guantities, but these are built out of Green operators applied to quantities supported near
pa- Thus one expects that as the distance betwesnd p4 increases, the bounds on our
nonlocal quantities should decrease. This turns out to be true (at least for, ¢igd >
const x A1/2): we simply have to work harder, establishing some general pointwise bounds
in Proposition 10.3. Our basic estimates in Proposition 10.2 are most usefuicfose
to pa; to get the bounds that lead to (9.6), in whigls farther fromp 4, we will apply
Proposition 10.3.

To establish (9.6) we again break Renj (X, Y) into its local, semi-local, and nonlocal
pieces asin (10.3). Inthe casesk . andRenj ., .., Proposition 10.3 again reduces
our work to weightedLL” bounds of purely local quantities. F&en},nomoc however,

Proposition 10.3 leaves us with bounding an expression of the rfei;f‘??/{sx, &y}, and

the obvious approach — Hélder’s inequality and the weiglittounds already obtained

— does not give us a strong enough bound for an adequate decay rate in (9.6). We will
circumvent this by obtaining a pointwise decay estimatetfowhich in turn gives us a
satisfactory decay rate f&en. (In fact, with the pointwise estimate @nin hand, it turns

out that the contribution dERen‘inonlOCto Rem is much smaller than the bounds we obtain
from the other two terms.)

With this discussion behind us, our procedure is clear. First we will fill our elliptic toolbox
by proving Propositions 10.2 and 10.3. To apply these we need to compute welghted
norms of various quantities appearingRen3, which is our next step. The final step is
then a matter of bookkeeping, applying the general elliptic tools to b()lgldf Rem .,
R(':‘ré,semi_loc an(_jRen},r]onloc‘ . . o

To avoid writing similar hypotheses over and over, and for notational simplicity, for the
rest of this section we impose the following.

Blanket hypotheses and notatiochalways denotes a connection with][ € ’,§+”1 o
(see Definition 6.1). Every Proposition, Lemma, etc., has an implicit hypothesis.gfor
sufficiently small and for allf] M;H-l,)»o N M*P", Constants: are uniform inA and in
all other relevant parameters not explicitly shown (though some would dependrmaiv,
if these were not fixed); e.g(5) depends only o8. Constants are continually updated, and
when a hitherto unnamexhppears, there is an implicit “for some constehil he notation
“x < y” meansx < cy. F always denotes the curvature of the connecfipandV = V4
denotes the full covariant derivative dh(Ad P ® A*T*N) (the tensor product connection
determined byA and the Levi-Civita connection). Given any vector fiXldn N, we write
X = ix F (thus there is aA-dependence we suppress). We witefor the center point of
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Aanda for A(A). For anyp € N, we letr, denote the distance fy and writer, forr,,.
When a pointp appears in a hypothesis, the lettealways meansa (p) = dist(p, pa).
The scales = const A2 and cut-off8 = Bsi(r4/€) are always as in (6.8), anddenotes
the characteristic function of the annuligs< r4 < 2¢} containing the support ofgl We
also define the operatol3 = D4 : 21(AdP) — 2°(AdP) ® 22(AdP) by

DAy = ((@*)*n, V2d 4 n); (10.5)

thus kerDA4) = Hj, the harmonic space in the middle of the elliptic complex

A
0— 2%Ad P)ﬁgl(AdP)@*Qi(Ad P) — 0. (10.6)

DefineAg‘, Af, Aﬁ‘r to be the Laplacians on 0-forms, 1-forms, and SD 2-forms, respectively,
constructed from this complex, and &, G/ be the inverses al§, A4. Also defineA?,
G4 onR2°(AdP) & 22(AdP) by A = A} @ A1, G4 = G§ @ G%. Note that

(DA)* (g0, p+) = d*po + V2(d ) ¢+ (10.7)
so that the quantityy = s;} of (6.14) can be written as

Ex = (DYH*GLDAX. (10.8)
Finally, observe that

DADY* = Ag, (DH*DA = AL (10.9)

Now we can finally begin proving Proposition 9.2. In the following proposition, what
drives the estimates are two facts: (dg is uniformly bounded below, and (ii) in the
Weitzenbock identity ford4 , only Riemannian curvature terms appdadoes not enter.

Proposition 10.2. For §g > 0 sufficiently small and any, §’, §” (possibly zerpof absolute
value less thaio, such that for any € N and anyw € 2°(AdP) & 22 (AdP):

IG4oll2 < Iy o2, (10.10)

Ir P VAVAGAwl2 < lIry w2+ 22 Hri ™ w2, (10.11)
Furthermore ifé = (D4)*G4w € 21(AdP) (cf. (10.8)),then

IEll2 < Iry P wll2, (10.12)

526 lla+ Iy VAE N2 S ey wlla. (10.13)

1-86-5'

Iy Y28 N2+ ) 28 Nl + 11, P VA 2 Sl Pl + 22 Mk PP wll2, (10.14)

lr, VAE a4+ 1Ir,  VAVAE |l

S @ ollz + 25 wllz + 45 215 o2 (10.15)
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As a corollary of Lemmal0.1, (10.12)—(10.15)if §o > O is sufficiently small and
0 < § < 8g, then

IGAwl(p) < c(8) - (RHS0f10.11)} and [£(p)| < c(8) - (RHS0f(10.15)}.
(10.16)

We remark that in (10.11), (10.14) and (10.15) it is important thaappears where it
does rather than,, or we would not get strong enough estimates in our applications. The
fact that bothr, andr,, appear together in Proposition 10.2 complicates its proof.

Proof. A slightly less general set of bounds was derived in [6, Lemma 3.3}Afbrthe
Laplacian on SD 2-forms only, but for the reasons mentioned prior to stating the proposition,
essentially the same proof works here. The only differences are that (i) in [6] the decay (6.11)
was true on all olN, not merely inB(p4, 2¢), and (ii) Ref. [6] dealt only with the case
p = pa. Since the cited proof is rather long, we will not repeat the parts that require only
minor modifications, and will jump to the points of departure.

To establish (10.10), the proof in [6, Lemma 3.3a] works verbatim to show that

Ir,° rGhwllz + lIr,° Gholla+ lIr,°VGiwl2 < Ir,* ol (10.17)

Note thats need not be positive here. Singggw| < |5~ *G4wl, (10.10) follows.

Moving to (10.11), lety € £2*(Ad P) be a form of arbitrary degree. The procedure in
[6] for proving its Lemma 3.3b,c — squaring, integrating by parts, commuting a covariant
derivative past a trace Laplacigf“)*V4 = V*V, and juggling terms — leads to

7,2 Valla+ lIr, °VVnlla < c(llr,°V*Valla + I, °1ll2
+lry, Vllz + ey ry? Fallallr =2 Vall2); (10.18)

here the smallness ¢4| has also been used to ensure that the ﬂélfm;‘s_lvmh that
initially comes up on the right-hand side {s |8|||rlj5VVn||2; see [6, Lemma 3.2]. (In

[6], there was no need to inseff‘”‘s/).) First consider the casg = Gg;w, wherew €

29(Ad P) ® 22 (Ad P). The Weitzenbdck formula gives“n = o + R(G4w), whereR

is an endomorphism proportional to the Riemann tensor. Moreover, we will see in Lemma
10.5(b) that fors, §’ sufficiently small,||rff‘3/r;5FA la < 2%~1 Inserting these facts into
(10.18), one can continue the argument as in [6] and arrive at an extended version of (10.11):

Ir; 272V GAwlz + IIr, VGAwla + Ir, VY GA®l2

Slrylollz + 2 w2, (10.19)

As for (10.12), sinceéD*n| < ¢|Vn|, the desired estimate follows from (10.17).
By similar manipulations, one can also establish that

Ir P TVGAwla + Ir TV VGAwl2 S Irk P wlla. (10.20)



D. Groisser, L. Sadun/Journal of Geometry and Physics 36 (2000) 324-384 373

SinceD is V4 followed by a covariantly constant projection, the same bounds hold with
VG4 replaced byD*G4w = & yielding (10.13). For the same reason, (10.14) follows
from (10.19).

Finally, to establish (10.15), return to (10.18) and use the Weitzenbdck formula for
1-forms,

V*VE = AYE + F(§) + R(E). (10.21)
HereF is an endomorphism proportionalEoSinceAfé = D*D(D*Ggw) = D*w (see
(10.9)), we have

Ir PV VEl2 < c(lr D wlo + Ir 26l + P53 r 2 Fllalr =Y €lla). (10.22)
Hence

IF=2VE 4+ [r°VVEl2 < c(llr 2 (D) wll2 + Ir &2 + 7 °VE]l2
HIrE P P AL g lla + 1270 Ve 12). (10.23)

Once agair 5™ r = Fl|s < Y1, and (10.19) (withV G Ao replaced by) implies
U2 ella+ 1r2 Vel < cir?? P wlla + 275 1,75 w2, (10.24)

Using (10.19) and (10.20) to bound the other terms in (10.23), the bound (10.15)
follows. O

Proposition 10.2 gives the same bounds fopadl N; to obtain (9.6), we need estimates
that show decay a$ = r4 (p) grows. The following proposition provides these estimates.
We separate the estimates into cases (a) and (b) below because for many purposes the only
w's forwhich we need to estimate the quantities in Proposition 10.2 are compactly supported
in a 2-ball aroundp 4, and we get sharper estimates in this case. Part (a) will thus be used
to bound the term§6‘R”(X, Y) anng‘{f{, &y} in Rem(X, Y); part (b) will be used to
boundGg{£x. &y }.

Proposition 10.3. Notation as in Propositiorl0.2. There existsfp > 0 such that the
following are true

(a) Suppose that for sonag (not necessarily related o= cA'/2, and allowed to depend
onw), (i) SUpA®) C B(pa, €o), (i) d = ra(p) = dist(p, pa) > 2o, and(iii) |F*| < B
on the complement stipfw). Let B be a cut-off function of the forista(4rp, /d) (so that
supfB) C B(p,d/2)). Then for any’ with |§'| < 8o, and anys € (0, 8o),

IGAwl(p) < c(®)d™ 07 1+ BY?)Iri w2, (10.25)

E1(p) < c(®)d ' @2 + B)lIry wl2. (10.26)
Thus ifsupfiw) C B(pa, 2¢) andd > 4e = cA'/?, then using6.10),

IGawl(p) < c@d 0 i w2, (10.27)

€1(p) < c@®d =22 Iri T w2, (10.28)
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(b) Suppose only thgtF4| < B on B(p, d/2), whered = dist(p, p4) > 0; suppose
nothing about the support af. Let 8 be as in(a). Then for alls’ with || < 8o, we have

IGAwl(p) < c®) L+ BYA (@ 11 wl2 + I, Boll2). (10.29)
Thus ifd > cAY?, then
1Gaol(p) < c@ @15 wllz + I, Boll2). (10.30)
Proof. (a) We will apply the Sobolev inequality (10.1), but first we must bound

Ir,°VV(BGEw) 2, IBGEwl2, and similar expressions witfif« replaced by
(i) First we will show that

Ir P VYV (BGg)ll2 < d7 07 1+ BY?) |5 wll2. (10.31)

Letn € 20AdP) @ .Q?r(Ad P). Proceed as in the proof of (10.11) — squaring, inte-
grating by parts, etc. — but this time leave the term proportion& favhich arises from
commutingV# past a trace-Laplacian) in integrated form. One arrives at

PV VI3 S Iy Anllg + NI, 0l + e, * V3 / r, 2| F||Vn?, (10.32)

whereA = (V4)*VA. Now replace; by g7. In the integral we haveF| < B, so
I VY B < cllir, ABI5+ I, Bnll3 + A+ B)lIr, V(Bn)|3). (10.33)
An integration by parts plus various steps already seen in the proof of Lemma 10.2 gives

Ir, Y (BE Sy ABm 2l Brllz < c(kllr,® A(Bn)I15 + &~ Hir,° Bnl5)
(10.34)

for arbitraryk. Inserting this into (10.33) witk < (14 B)~*, we find
I PV BIE < I, A5 + (L+ B)lir,° Bnll. (10.35)

Using the Weitzenbdck formula as in the proof of Proposition 10.2, we can regldiye
Al absor~bing the zeroth—?rder term intb+ B)|r,* Bnl|3. Additionally, by (10.17) we
have|r,Bnll2 < Ilr,® A4 (Bn)ll2. Hence

I 2 VY (B2 < L+ BY?) |, AZ(Bn) - (10.36)
Next, note that for any functiof)
|AG(fn) — fAGN] S IVV flinl + [V f1IVnl. (10.37)

Apply this with f = g andy = Ggw, noting that by the hypothesis on the supportof
we haveA4n = fn = 0. Since|V/ 3| < cd™/, and since on the support §18 we have
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both3d < r <dandid < ra < 3d, we obtain

r 2 A (B < erx(d 2 nl +d Y Vnl) < cd 0 g nl + 4 VD),
(10.38)

wherey denotes the characteristic function of the annélaisg r < %d. Inserting this into
(10.36), we have

IV (B2 < @+ BY2)ed 0= (I xr M nliz2 + 113 Vinll2)
< (14 BY2ed 0 (17 gl + 17 Vinll2). (10.39)

Now apply (10.17) to obtain
Ir V(B2 < L+ BY?)ed 1070 |1+ w2, (10.40)

which leads to (10.31).
Moving on to||BGg‘9w||2, and repeating some of the steps in the proof of (a) withO0,
we have

1BGAwl2 S I1A5(BGA®) 2
SAd Ui GAwlla + 175 VGAwl) S d VY I vl (10.41)

This is smaller than the bound (10.31), so (10.1) gives (10.25).

The bound (10.26) is derived by methods similar to preceding ones and those used in
Proposition 10.2. We leave the details to the reader.

(b) Proceed as in (a); the only change is that now we no longer fiave 0. The first
effect of this change occurs in (10.38), where we have to|adtjfw| to the RHS. The
effect of this term is to addl + BY/2)||r—® Bw||» to the RHS of (10.39) and (10.40), hence
to (10.31). There is a similar change in the bound||¢§n;gw||2, but its effect is smaller
than the preceding one. O

To apply Propositions 10.2 and 10.3 to estinR&, we need to estimate expresssions
of the form||r} w2 for variousm, wherew = Ren’iloc, Ren’isemiloc or Ren’inonloc (see
(10.3)). First we deal with the purely local objeken ,.(X,Y) = R"(X,Y). To start,
we need a pointwise estimate given by the next lemma. The conclusion of the lemma is
deceptively simple; the way in which the derivativesXodndY are coupled to each other
and toV F in the definition ofReny is crucial.

Lemma 10.4. For X, Y € b4,
IR"(X, V)| SIXIIYI(B+ € 2)(F| +ralVFI), (10.42)
(Here X, Y are the un-cut-off versions of X; see(6.8).)

We remark that for general vector fields, this lemma would be false.
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Proof. Let¢ = R”(X, Y).From (8.4) we hav&” (X, Y) = B2R" (X, ¥)+termsinvolving
the derivative oﬁ3 The latter are easily dealt with, giving the terms proportion@t tion
(10 42) ForR”(X Y), the first three terms in (8.4) have norm boundedE},(|X||Y| +
IAX||Y] + |X||AY]), and an easy computation shows that fore hy, |AX| < |X].
Furthermore, becaudeis an ASD (and hence Yang—Mills as well) and the * rotatlonal"
parts ofX, ¥ are SD, the remaining three termsA¥ (X, ¥) would vanish if the metric
on N were Euclidean. When we do the bookkeeping necessary for @) @ifference
between the metric coefficiengs and §jj, we obtain contributions bounded Y| |Y |
(IF| +ralVF]). U

Thus, boundingGgR”(X, Y)| pointwise boils down to estimates of the form in the
following lemma.

Lemma 10.5. Letp € N be arbitrary and let/ = dist(p, p4). Then we have the following
estimates
(@)Assuméd < § < 2andn > —2+ 6. Then

Pl n—=48 <2,
1Br, ri Fllz+ B, ri  Flla+ 1B, °ri 7'V Fll2 < { A2llogal¥2, n—s=2,
)\1+(n78)/2’ n—2=8=> 2’

(10.43)

and for all n

lxr, 2 raFllz+ llxr, *ri V|2 S At0H/2, (10.44)

(b) Leteg > )‘o/ be some fixed number. For< § < 1and—1+ 8 < n < 3,we have

R T T LAL (10.45)
4351+ .
" Al ifeg < d.
Proof. (a) First consider the case= 0. From (6.11) one quickly finds
A, —2<n<?2,
IBr3Fllz + IBry ™ Flla < § 22llogaY2, n=2, (10.46)
ALtn/2 n> 2,
and for alln,
Ixri Flip < 21/2, (10.47)

As for ||ﬂr”+1VF||, the same argument as in the proof of [5, Lemma 3.3b] shows that

IBr AV F(5 < nllBri FII3 + 185 F I3 4 118115 + / BErat2|p|3,
(10.48)
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Since|dB| < e~ 1x, we haveldB|r Tt < ce” x. Thus

1/2
IBri Y Fll2 SIBri Fliz + 221 x Fliz + ( / B?r 2"+2|F|3) : (10.49)

>From (6.11), one can deduce that

n n<3
1 2 b 9

(/,32 2"+2|F|3) < { A3logr|¥2, n =3, (10.50)
A31/2-3/2 n>3.

Combining this with our previous bounds, we find that
18"V Fl2 < RHS 0f (10.46). (10.51)

To bound||xrA+1VF||2, again use the analysis leading to (10.48), but itkeplaced by
a smooth extension ¢f of the form f (r4 /€) with f supported m% 3]. (Itis simplest first
to note that since, < 2¢ on supgy), |l xri V|2 < A+D/2|x VF|.) Then analysis
similar to the above leads to

Ixr 1V Fll2 < RHS of (10.47). (10.52)

This completes the cage= 0 and we move on to the general case.
We first bound|;3r‘5 " F||2; the method for bound|nn;6r—5r”+lF||4|s identical. Break

the ball B(pa, 2¢) into two pieces: an inner regioBj, = B(p, 1d) N B(pa, 2¢) and an

outer regionBoyt = B(pa, 2¢) — Bin. On Boyt, We haver, > %d, and hence,/r, <
(rp+d)/r, <3.Thus

Py FAIF | = (ra/rp)°ry P |FI S P70 FL (10.53)
implying
-4 -4 -8
By raF 2wy S IBTA ™" Flli2son S 18T FllL2s(pa2en
A9, —2<n—-4§<2,
< A%llogalY2, n—s=2, (10.54)

W He=8/2 55 2

For the integral oveBjy, first suppose — § < 2 and separately consider the cages A,
d > 1. In both cases note thgl < r4 < 3d in this region. When! < x, we then have
ra <rand|F| <172 onBj, so

1Br,  rh Fll2gy S A2l 2, S A" 2d%° S A0 (10.55)

On the other hand, i# > A, then since4/d is bounded above and below @&, (6.11)
impliesr | F| < 22r%~% < 22d"~*. Hence

1Br 2 Fll L2y S A2d" 2 Nry | 2ggy) S A2d" 72 < A0, (10.56)
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sincen — § < 2. Combining this with the estimate f@;;, we obtain the top two lines of
(10.43).

If n —§ > 2, separately consider the cages 4¢ andd > 4e. If d < 4e, the procedure
for the casé > X above yields

1Br,  rh Fllp2cgyy S A 20r, 2l 2pyy S M2d" 072 S a9z, (10.57)

the same bound as oBiy. If d > 4e¢ then on the support o we haver, > ¢, so
5p1|F| < A7%2r% | F|. Thus (10.46) yields the remaining case of (10.43) for the bound
on|lr,°r Fll2.

The method for boundingﬂr;‘srTlVFH is essentially identical to the method for
bounding||ﬁr[j5rz+1VF|I2, except that for the estimates oy, first multiply by a cut-off
function of the formBs4(2r, /d), and then integrate by parts as in (10.48).

To bound||)(r—‘s " F |2, note that on supgx) we have|F| < const andry < ¢, SO

lxr, A FILS K21, P2 S 20, P negp p ey S AHOTD/2, (10.58)

Similarly | xr,°riVF| < A"2|xr,*VF |2, and the same procedure as dot= 0 com-
pletes the work
(b) First write

lry i Flla < 1L = Byry *riFlla+ |Bry *ri Flla, (10.59)

whereg is a cut-off of scaleg centered ap 4. On the support of + 8 we have F| < const,
so the first term on the RHS is bounded by a constant. The second term can be estimated as
in the proof of (b). O

We are now in a position to bouri@:§ Rem loc| POINtwise, but we postpone this until
we have collected the estimates needed to bound the semi-local and nonlocal contributions
to G§Renj. These require bounds on norms&f = D*G4DX, which in turn require
pointwise bounds o® X .

Lemma 10.6. For any vector field X on N, and any ASD connection A, we have the pointwise
formulas

@) *ixFa = (d X*, Fa), (10.60)
d (tx Fa) = Symg(VX*)tFa, (10.61)

whereX* is the metric dual of Xd X* is the self-dual part of dX Synﬁ(T) denotes the
traceless symmetric part of a rank-two tensor figlde I'(T*N ® T*N), and in a local
orthonormal basig’ of the cotangentbundér’, F) = % i Fij eandTHF = Ty Fi®' AOK.
Hence

IDA(x Fa)l S (1 X*| + ISymg(VX™ )| Fal, (10.62)



D. Groisser, L. Sadun/Journal of Geometry and Physics 36 (2000) 324-384 379
IVADA(x Fa)l < c((IV(d X)) + [V(SYMB(VX ")) Fal + (|ds X*|
+ISYMG(VX*)DIFal). (10.63)
Hence ifX € b4, then
IDAX| S (raB + € LI X|IFal, (10.64)
I(DM*DAX| < c|VADAX| S (B + € 20| X|(|Fal + ralVAFal). (10.65)

Proof. Using the facts thaf* = — % d*, d*F = 0, and«F = —F, we have
dM* ((xF) = — x dA(xix (xF)) = %d*(X* A F) = %(dX* A F) = (dX*, F);
(10.66)
this gives (10.60). Now fiy € N. Calculating in a local orthonormal franfe; } of TNand
dual coframg6'} with Ve;|, = 0,
dixF) = p+ (Zei A LViXF>
=Y (ViX))p4(0' A, F) = py(SynP(VX)4F) (10.67)

by Lemma 2.3 of [5]. Since for any symmetric 2-tenggrthe pure-trace part df yields
aselfdual 2-form under the operatiaiF, we may replace Syfrby Syrr% in (10.67), and
by simple representation theory, the in (10.67) is redundant.

Egs. (10.64) and (10.65) follow from Lemma 10.6 and a pointwise computatibnof,
Syng(VX*) that we leave to the reader. O

Corollary 10.7. Forall X € h4,andallp € N, the element& € #4 satisfy the following
integral bounds:
@If =1 <m < 2,then

1P X lla < cm)a™L, (10.68)
(b)If =1 <m < 0,o0rifd =dist(p, ps) Seand—1 < m < 2,then

IFDAX |12 < c(m)A™?(b - M2 + a). (10.69)
(c)Forall § € (0, 1),

lr, 2 (DM*DAX |2 < cllr, VADAX |l S A0 (b +a - 1~ Y2). (10.70)

Proof. Using (10.64) and (10.65) plys| < b + ar~'r4, most of these bounds follow
directly from Lemma 10.5. The exception is (10.69) in the ease 0, for which one must
also use the triangle inequality <74 +d Sra + Ami2, O

We are now in a position to derive our final estimates on the norrasxeéded to bound
|GoRem (. iod and [GGRem | | pointwise. We also use the opportunity to prove
(6.13).
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Proposition 10.8. There exist$g > 0 such that if0 < § < §p and 0< §’ < &g, then for
£ = (DY*G4DAX (with X € h4) we have the following
(@)If 0 <8 < 8o, then

EPIS A (b2 a2, (10.71)
If furthermored = ra(p) > 4e = cA/?, then
E(P)] < c®ra(p) 220 b A +a- 23 (10.72)
(b)
IE12 S 2820 - b +a - 23 (10.73)

Sincetxy = X — w4 X, this implies(6.13).
(©)If 0 <6 < 8g, then

%8s S A% (b +a-27Y). (10.74)
(d) If |8] < 8o, then

Ir:0e s S A2 - 4-a - 22). (10.75)
Proof. (a) We will omit writing thes-dependence of the constants. From (10.15) géyen
8o as above, there exists > 0 such that

(P S 1, @D 0l + 2% M P ol + 2222 P )z, (10.76)
wherew = DAX. Using Corollary 10.7, we compute

)\’25/—1”’,,;5—28/&)”2 + )\’25/4—5—2”’,[%—28—25/0)”2 5 A,B/(b . )\’—l +a- )\’—3/2). (1077)

The bound omrlja(df)*wng from Corollary 10.7 is smaller than this, so we obtain (10.71).
For (10.72), apply (10.28) and Corollary 10.7.
(b)—(d). Apply Proposition 10.2 and Corollary 10.7. O

We remark that by using the pointwise decay estimate (10.76) one can obtain the weighted
L* decay

2 la S A70ra() P (b +a-27Y?) (10.78)

for d > ¢a1/2, but this is of no help to us.
We are now ready to collate all the estimates needed to prove Proposition 9.2.

Corollary 10.9. (a) There existg > 0,8 > 0 such that fol0 < § < §p, the following are
true.

I, °Ren o (X, V)ll2 S 27267 + ba- A~ Y2 + 4% 07D, (10.79)
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lr P Re oo (X, Vll2 S 22207 +ba- a2 4 a® 17h, (10.80)
”r;S Rer"}isemiloc”2 S P (bz +ba- 272 42 )\_1/2), (10.81)
I Rem comiodlz S A% (2 + ba- AY2 + 4% - 27Y3), (10.82)
17 Rem oniod X, iz < A% (02 + ba- 272 + 4% - 27h), (10.83)
Ir i Rem ponod X, Vll2 < A4 (02 + ba- 472 4+ a2 . 2 7h). (10.84)

(b) There exists’ > 0 such that for allp € N, the following are true

IGReM 1o o(X. V)[(p) S 272 (0% + ba- a2 4+ 4% 271, (10.85)
IGGREM comiod X. VI(p) S A7 (b2 + ba- 272 442 27Y2), (10.86)
IGEReM oniod X, VI(p) S A7 (0% +ba- 2~ Y2 442 57h). (10.87)

(c) There existdp > 0,8’ > Osuchthati0 < § < 8pandd > 4¢ = ¢A1/2 the following
are true

IG§Rem oo (X. )I(p) S d 07028 »% . 2Y2 + bat a® - 173, (10.88)
IGEREM comiod X. VI(p) S a3 0% +ba- 272 +42. 2717, (10.89)

IGEReM oniod X, VI(p) S d 22792 1?4 + ba- 22 + a?). (10.90)

Proof. (a) These bounds follow directly from Lemma 10.4, Corollary 10.7 [theounds
in Proposition 10.8, and Hdlder’s inequality.

(b) Use part (a) and Proposition 10.3.

(c) SinceRen}’loc(X, Y) and Ren’isemnoc(X, Y) are supported iB(pa, 2¢), for these
terms we can apply (10.27) and the corresponding bounds in (ai)en‘ésemnoc(x, Y)is
not locally supported, we appeal instead to (10.30):

IGIE. E)(p) S @ 01 e 2 + I, BLE. €)1, (10.91)

whereg is a cut-off of scale}d as in Lemma 10.4.

If we estimate||r%+5/{$, &}l using (10.84), we obtain the right-hand side of (10.90).
Were we next to estimaue;‘sﬁ{g, &1}ll2, the resulting bound would be too large to be of

use. Instead, sincé < r4 < 3d on the support o8, we can use the pointwise bound
(10.72) to find

Iry BlE. £)2 < lry* Bllad 248 (b - 2.+ a - 3%))2
< g2 (2 32 4 g 32 4 g2y
< dflfsfa’k3/276”(b2 +ba-2V2 4 g2 07, (10.92)

which is much smaller than our bound mrj}\*‘y{g, &}l2. Thus (10.90) follows. O
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Finally, we have the following proof.

Proof of Proposition 9.2. (a) Add the bounds (10.85)—(10.87) to obtain (9.5). If we add
the bounds (10.88)—(10.90) we obtain a stronger bound than (9.6):

IRem (X, V)| S r 2 02 + ba- A Y2 442 1712, (10.93)

(b) In the proof of part (a), the only way in whiérentered was through tHe* bounds on
||r;5§4||4, ||rj+‘S &4ll4, and the pointwise decay (10.72). Hence our assertion follows from
the hypothesis (Z5) of Section 7. O
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Appendix A

The point of the following weighted Sobolev inequality is that onraimensional
manifold there is no Sobolev embedding — L°°, but the failure is borderline. Thus
by introducing an arbitrarily small weight into the Sobolev norm, we are able to obtain an
embedding.

Lemma A.1l. Let E — N be a Riemannian vector bundle with metric-compatible con-
nectionV, where N is compact, Riemannian, and m-dimensi¢mal 1). Givenp € N
and R, > Ry > 0, let 2(p; R1, R2) denote the annulugRy < r, < Ro}, wherer, is

the distance to p. There exists a constant c, independewit efich that for anys > 0,

Ry > R1 > 0 (but smaller than the injectivity radijisany p € N, and anyp € I'(E), we
have

lp(p)| < cs~IHYm RS ( I, 2@l Lm (2(p: Ry R2)) + ||r;“V¢||Lm<BR2<p») :

Ro — Ry
(A.1)
Consequently
6(p)] < 8~ (pllLmny + 17, Vlin ). (A-2)
Il oecny < 8~ Y™ @ meny + j;g*“’isw”v'«m”- (A.3)

Proof. By Kato’s inequality, it suffices to prove this for the trivial real line bundle, i.e. for
functions onN.
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First replaceN by R™ and consider a compactly supported functjor C3°(B(0, R)).
Letd € §™~1. Then, using polar coordinates &0, R), we have

Raf R
1f O] = ‘/ 8—(& 6) dr S/ IV fI(r, 0) dr, (A.4)
0 r 0

implying

R
Vol (S~ 1| £(0)] 5/ do (/ IV FI(r, 0) dr) :/ [V £l ri" dvol.
sm-1 0 B(O,R)
(A.5)

Applying the same argument on a normal-coordinate B, R) in N (where f ¢
Cy°(B(p, R))), using the compactness Mfto get uniformity in the constants below, we
obtain

[f(p) < c/ |Vf|rl%_m dvol = c/ r_‘SIVf|rIl,_m‘HS dvol
B(p,R) B(p,R)
< cllry®V fllLm @Ry Iy 2l o= 8y 1))
< 5 VROV flln ey, RY -
Now remove the assumption ttfas supported inside a normal coordinate ball. Repface

in the preceding argument I(r) f, whereg is a cut-off function identically 1 for < R
and vanishing for > Ry; thus|VS| < ¢/(R2 — R1). We then have

£ (P)| < 8™ YRS OV (Bl
<8 VMR, (VB Fllen + 1B,V fllLm)

< s~ AYm RS (

||r;5f||Lm(9(R1,R2,p)) + ||rp8Vf||Lm(BR2(p))> ,
(A7)

Ro — R1

yielding (A.1). TakingR, = 2R; to be, say, half the injectivity radius &, we obtain

(A.3). O
As a corollary, we have the following.

Corollary A.2. Let E N, V be as in Lemma&\.1, and assum@&im N = 4. Then for all
8 € (0, 1), there exist constantg§), independent oV, such that for allp € ' (E),

lp(p)l < C(5)(||¢||L2(N) + ||”;8VV¢||L2(N)), (A.8)
and hence
¢l < c(®)suplligliz + lIr,°VVell2). (A.9)

PEN
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Proof. Applying Lemma (A.1) withm = 4, we have

lp(p)| = c®)(l@lla+ IIV;5V¢|I4)~ (A.10)
Using the Sobolev embeddirig (N) — L*(N), we then find

B < c®lgll2+ 7, Vell2+ lIr,°VVll2). (A.11)

But sinces < 1, we also have the weighted Sobolev inequality of Lemma 3.1 of [6]:

Ir 2yl < ellr Wil + IV ll2) (A12)
(the proof is again a polar-coordinate computation). Using this we can bootstrap (A.11) into
the form (A.8). O
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